Project description:Solanum torvum Sw is worldwide employed as rootstock for eggplant cultivation because of its vigour and resistance/tolerance to the most serious soil-borne diseasesas bacterial, fungal wilts and root-knot nematodes. A 30,0000 features custom combimatrix chip was designed and microarray hybridizations were conducted for both control and 14 dpi (day post inoculation) with Meloidogyne incognita-infected roots samples. We also tested the chip with samples from the phylogenetically-related nematode-susceptible eggplant species Solanum melongena.The genes identified from S. torvum catalogue, bearing high homology to knownnematode resistance genes, were further investigated in view of their potential role in the nematode resistance mechanism.
Project description:Solanum torvum Sw is worldwide employed as rootstock for eggplant cultivation because of its vigour and resistance/tolerance to the most serious soil-borne diseasesas bacterial, fungal wilts and root-knot nematodes. A 30,0000 features custom combimatrix chip was designed and microarray hybridizations were conducted for both control and 14 dpi (day post inoculation) with Meloidogyne incognita-infected roots samples. We also tested the chip with samples from the phylogenetically-related nematode-susceptible eggplant species Solanum melongena.The genes identified from S. torvum catalogue, bearing high homology to knownnematode resistance genes, were further investigated in view of their potential role in the nematode resistance mechanism. total RNA was extracted from control and 14 days post-infection (infection with root-knot nematode Meloidogyne incognita) from roots of Solanum torvum and Solanum melongena. Three biological replicates were used for each condition and genotype for a total of 12 samples.
Project description:WRKY transcription factors, which play critical roles in stress responses, have not been characterized in eggplant or its wild relative, turkey berry. The recent availability of RNA-sequencing data provides the opportunity to examine WRKY genes from a global perspective. We identified 50 and 62 WRKY genes in eggplant (SmelWRKYs) and turkey berry (StorWRKYs), respectively, all of which could be classified into three groups (I-III) based on the WRKY protein structure. The SmelWRKYs and StorWRKYs contain ~76% and ~95% of the number of WRKYs found in other sequenced asterid species, respectively. Positive selection analysis revealed that different selection constraints could have affected the evolution of these groups. Positively-selected sites were found in Groups IIc and III. Branch-specific selection pressure analysis indicated that most WRKY domains from SmelWRKYs and StorWRKYs are conserved and have evolved at low rates since their divergence. Comparison to homologous WRKY genes in Arabidopsis revealed several potential pathogen resistance-related SmelWRKYs and StorWRKYs, providing possible candidate genetic resources for improving stress tolerance in eggplant and probably other Solanaceae plants. To our knowledge, this is the first report of a genome-wide analyses of the SmelWRKYs and StorWRKYs.
Project description:BackgroundEggplant (Solanum melongena L.) and turkey berry (S. torvum Sw.), a wild ally of eggplant with promising multi-disease resistance traits, are of great economic, medicinal and genetic importance, but genomic resources for these species are lacking. In the present study, we sequenced the transcriptomes of eggplant and turkey berry to accelerate research on these two non-model species.ResultsWe built comprehensive, high-quality de novo transcriptome assemblies of the two Leptostemonum clade Solanum species from short-read RNA-Sequencing data. We obtained 34,174 unigenes for eggplant and 38,185 unigenes for turkey berry. Functional annotations based on sequence similarity to known plant datasets revealed a distribution of functional categories for both species very similar to that of tomato. Comparison of eggplant, turkey berry and another 11 plant proteomes resulted in 276 high-confidence single-copy orthologous groups, reasonable phylogenetic tree inferences and reliable divergence time estimations. From these data, it appears that eggplant and its wild Leptostemonum clade relative turkey berry split from each other in the late Miocene, ~6.66 million years ago, and that Leptostemonum split from the Potatoe clade in the middle Miocene, ~15.75 million years ago. Furthermore, 621 and 815 plant resistance genes were identified in eggplant and turkey berry respectively, indicating the variation of disease resistance genes between them.ConclusionsThis study provides a comprehensive transcriptome resource for two Leptostemonum clade Solanum species and insight into their evolutionary history and biological characteristics. These resources establish a foundation for further investigations of eggplant biology and for agricultural improvement of this important vegetable. More generally, we show that RNA-Seq is a fast, reliable and cost-effective method for assessing genome evolution in non-model species.