Project description:Here, we report the comparison of transcriptomes of Anabaena sp. PCC7120 and a FurC-overexpressing derivative strain grown under standard conditions (BG11) and after 48 hours of nitrogen step-down (BG110). Anabaena sp PCC7120 is a cyanobacterium that differentiates specialized nitrogen-fixing cells called heterocysts. Our data suggests that FurC directly controls the regulation of heterocyst differentiation and nitrogen fixation in this cyanobacterium. In addition, we found that FurC is also clearly involved in the regulation of several genes belonging to different functional categories, such as iron metabolism, photosynthesis and regulatory functions.
Project description:Transcriptomic analyses using high-throughput methods have revealed abundant antisense transcription in bacteria. Most frequently, antisense transcription is due to the overlap of mRNAs with long 5’ regions or 3’ ends that extend beyond the coding sequence. In addition, antisense RNAs that do not contain any coding sequence are also observed. Nostoc sp. PCC 7120 is a filamentous cyanobacterium that, under nitrogen limitation, behaves as a multicellular organism with division of labor among two different cell types that depend on each other, the vegetative CO2-fixing cells and the nitrogen-fixing heterocysts. Differentiation of heterocysts depends on the global nitrogen regulator NtcA and requires the specific regulator HetR. To identify antisense RNAs potentially involved in heterocyst differentiation we performed an RNA-Seq analysis of cells subjected to nitrogen limitation (either at 9 or 24 hours after nitrogen removal) and analyzed the results in combination with a genome-wide set of nitrogen-regulated transcriptional start sites and a prediction of transcriptional terminators. Our analysis resulted in the definition of a transcriptional map including more than 4,000 transcripts, 65% of them in antisense orientation to other transcripts. In addition to overlapping mRNAs we identified nitrogen-regulated non-coding antisense RNAs transcribed from NtcA-dependent or HetR-dependent promoters.
Project description:Transcriptional profiling of a unicelluar diazotrophic cyanobacterium Cyanothece sp. ATCC 51142 in constant light under nitrogen fixing condition. The controls comprised of equimolar pool of RNA from all time points.
Project description:The molybdenum cofactor (Moco) is the prosthetic group of all molybdenum-dependent enzymes except for nitrogenase. The multistep biosynthesis pathway of Moco and its function in molybdenum-dependent enzymes are already well understood. The mechanisms of Moco transfer, storage and insertion, on the other hand, are not. In the cell, Moco is usually not found in its free form and remains bound to proteins because of its sensitivity to oxidation. The green alga Chlamydomonas reinhardtii harbors a Moco carrier protein (MCP) that binds and protects Moco but is devoid of enzymatic function. It has been speculated that this MCP acts as a means of Moco storage and transport. Here, the search for potential MCPs has been extended to the prokaryotes, and many MCPs were found in cyanobacteria. A putative MCP from Rippkaea orientalis (RoMCP) was selected for recombinant production, crystallization and structure determination. RoMCP has a Rossmann-fold topology that is characteristic of nucleotide-binding proteins and a homotetrameric quaternary structure similar to that of the MCP from C. reinhardtii. In each protomer, a positively charged crevice was identified that accommodates up to three chloride ions, hinting at a potential Moco-binding site. Computational docking experiments supported this notion and gave an impression of the RoMCP-Moco complex.