Project description:NK cells, as a type of key immune cell, play essential roles in tumor cell immune escape and immunotherapy. Accumulating evidence has demonstrated that the gut microbiota community affects the efficacy of anti-PD1 immunotherapy and that remodeling the gut microbiota structure is a promising strategy to enhance anti-PD1 immunotherapy responsiveness in advanced melanoma patients; however, the details of the mechanism remain elusive. In this study, we found that Eubacterium rectale (E. rectale) was significantly enriched in melanoma patients who responded to anti-PD1 immunotherapy and a high E. rectale abundance was related to longer survival in melanoma patients. Furthermore, administration of E. rectale remarkably improved the efficacy of anti-PD1 therapy and benefited the overall survival of tumor-bearing mice; moreover, application of E. rectale significantly recruited NK cells into the tumor microenvironment. Interestingly, conditioned medium isolated from an E. rectale culture system dramatically enhanced NK-cell function. Through GC-MS/ UHPLC-MS/MS-based metabolomic analysis, L-serine production was found to be significantly decreased in the E. rectale group; moreover, administration of an L-serine synthesis inhibitor dramatically increased NK-cell activation, which led to enhanced anti-PD1 immunotherapy effects. Mechanistically, supplementation with L-serine or application of the L-serine synthesis inhibitor affected NK-cell activation through Fos/Fosl. In summary, our findings reveal the role of bacteria-modulated serine metabolic signaling in NK-cell activation and provide a novel therapeutic strategy to improve the efficacy of anti-PD1 immunotherapy in melanoma.