Project description:Quorum sensing (QS) is a complex cell-cell communication mechanism that coordinates population-level behaviors in microbes. In eukaryotes, this phenomenon has been extensively described in the dimorphic yeast Candida albicans as its main QS molecule, the sesquiterpene alcohol farnesol, is responsible for various phenotypic (i.e., inhibition of yeast-to-hyphae transition, biofilm formation and, hence, pathogenesis) and metabolic (i.e., induction of oxidative stress and apoptosis) changes. Ophiostoma piceae CECT 20416 is a dimorphic saprotrophic ascomycete with biotechnological interest that also produces farnesol as a QS molecule, but in this case, the alcohol promotes the morphological transition to the mycelial form, biofilm formation, enzyme secretion, and melanin production. Here, we characterized the physiological response of Ophiostoma piceae to farnesol, and the molecular components of the QS system of this fungus have been investigated using a ‘multiomics’ approach that involved genomic, transcriptomic, and proteomic analyses. Some genes identified in this work are proposed as key factors in farnesol transport and signaling. We have also cataloged the genes undergoing major transcriptional changes triggered by the presence of the autoinducer, such as cell-wall remodeling, ROS protection, and melanin biosynthesis, using self-organizing maps (SOMs). This analysis could be useful for applications in the forestry industry, for enzyme production, and for the valorization of residues. Furthermore, it might as well help to investigate the QS mechanisms of clinically relevant fungi phylogenetically related to Ophiostoma.
Project description:A rapid, sensitive, and simple method was developed to detect the sapstain fungi Ophiostoma piceae and O. quercus in stained wood. By using microwave heating for DNA extraction and PCR with internal transcribed spacer-derived-specific primers, detection was feasible within 4 h, even with DNA obtained from a single synnema. This method can easily be extended for the detection of other wood-inhabiting fungi.
Project description:Ophiostoma piceae CECT 20416 is a dimorphic wood-staining fungus able to produce an extracellular sterol-esterase/lipase (OPE) that is of great biotechnological interest. In this work, we have studied the morphological change of this fungus from yeast to hyphae, which is associated with the cell density-related mechanism known as quorum sensing (QS), and how this affects the secretion of OPE. The data presented here confirm that the molecule E,E-farnesol accumulates as the cell number is growing within the population. The exogenous addition of this molecule or spent medium to the cultures increased the extracellular activity of OPE 2.5 times. This fact was related not to an increase in microbial biomass or in the expression of the gene coding for OPE but to a marked morphological transition in the cultures. Moreover, the morphological transition also occurred when a high cell density was inoculated into the medium. The results suggest that E,E-farnesol regulates through QS mechanisms the morphological transition in the dimorphic fungus O. piceae and that it is associated with a higher extracellular esterase activity. Furthermore, identification and transcriptional analysis of genes tup1 and cyr1, which are involved in the response, was carried out. Here we report enhanced production of a sterol-esterase/lipase of biotechnological interest by means of QS mechanisms. These results may be useful in increasing the production of secreted enzymes of other dimorphic fungi of biotechnological interest.