Project description:Pseudomonas syringae pv. phaseolicola (Pph) is a significant bacterial pathogen of agricultural crops, and phage Φ6 and other members of the dsRNA virus family Cystoviridae undergo lytic (virulent) infection of Pph, using the type IV pilus as the initial site of cellular attachment. Despite the popularity of Pph/phage Φ6 as a model system in evolutionary biology, Pph resistance to phage Φ6 remains poorly characterized. To investigate differences between phage Φ6 resistant Pseudomonas syringae pathovar phaseolicola strains, we performed expression analysis of super and non piliated strains of Pseudomonas syringae to determine the genetic cause of resistance to viral infection.
Project description:We implemented transcriptional analysis methods using cDNA and high-throughput sequencing data to identify HrpL-regulated genes for six strains of Pseudomonas syringae
Project description:Pseudomonas syringae, a Gram-negative plant pathogen, infects more than 50 crops with its type III secretion system (T3SS) and causes severe economic losses around the world. Although the mechanisms of virulence-associated regulators of P. syringae T3SS have been studied for decades, the crosstalk and network underlying these regulators are still elusive. Previously, we have individually studied a group of T3SS regulators, including AefR, HrpS, and RhpRS. In the present study, we found 4 new T3SS regulator genes (envZ, ompR, tsiS and phoQ) via transposon-mediated mutagenesis. Two-component systems EnvZ and TsiS natively regulate T3SS. In order to uncover the crosstalk between 16 virulence-associated regulators, (including AefR, AlgU, CvsR, GacA, HrpL, HrpR, HrpS, MgrA, OmpR, PhoP, PilR, PsrA, RhpR, RpoN, TsiR and Vfr) in P. syringae, we mapped an intricate network named PSVnet (Pseudomonas syringae Virulence Regulatory Network) by combining differentially expression genes in RNA-seq and binding loci in ChIP-seq of all regulators.
Project description:We implemented transcriptional analysis methods using cDNA and high-throughput sequencing data to identify HrpL-regulated genes for six strains of Pseudomonas syringae Each Pseudomonas syringae strains was transformed with either pBAD::EV or pBAD containing native hrpL sequence. Strains were grown in MM media supplemented with arabinose and collected 1, 3, and 5 hours post arabinose treatment. RNA was extracted for each time point and mixed at a 1/3 ratio. After removal of rRNA, double stranded cDNA was generated and library prepared accordeing to Illumina protocols.
Project description:Pseudomonas syringae was grown on minimal media and King's B medium. The goal of this project was to generate pilot data in preparation for a summer course on high-throughput sequencing where participants prepared their own RNA-Seq libraries and analyzed the resulting data. The summer course was funded by NIH grant 5R25EB023928-03 "A hands-on, integrative next-generation sequencing course: design, experiment, and analysis".
Project description:Pseudomonas syringae pv. syringae 9644 (Pss9644) is a causal agent of bacterial cherry canker causing necrotic symptoms on leaves, fruits, gummosis and canker in woody tissues of sweet cherry (Prunus avium). To understand which virulent factor genes were expressed in vitro, Pss9644 was grown in rich media (King's B Broth) and minimum media (hrp-inducing minimum media). The latter mimics the in planta environment.
Project description:Common bean (Phaseolus vulgaris L.) is an important crop both as a source of protein and other nutrients for human nutrition and as a nitrogen fixer that benefits sustainable agriculture. This crop is affected by halo blight disease, caused by the bacterium Pseudomonas syringae pv. phaseolicola (Pph), which can lead to 45% yield losses. The resistance of common bean to Pph is conferred by six loci (Pse-1 to Pse-6) and minor-effect quantitative trait loci (QTLs); however, information is lacking on the molecular mechanisms implicated in this pathosystem. Here, we describe an in-depth RNA-sequencing analysis of the tolerant G2333 bean line in response to the Pph strain NPS3121. We identified 275 upregulated and 357 downregulated genes in common bean in response to Pph infection. These differentially expressed genes were mapped to all 11 chromosomes of P. vulgaris. The upregulated genes were primarily components of plant immune responses and negative regulation of photosynthesis, with enrichment for leucine-rich repeat (LRRs) and/or malectin-like carbohydrate-binding. Interestingly, LRRs and malectin genes mapped to same location as previously identified Pph resistance loci or QTLs. For instance, the major loci Pse-6/HB4.2 involved in broad-resistance to many Pph races, co-located with induced LRR-encoding genes on Pv04. These findings indicate a coordinated modulation of genes involved in pathogen perception and signal transduction. In addition, the results further support these LRR/malectin loci as resistance genes in response to halo blight. Thus, these genes are potential targets for future genetic manipulation, enabling the introduction of resistance to Pph into elite cultivars of common bean.