Project description:Gliomas arising in the brainstem and thalamus are devastating tumors that are difficult to surgically resect due to their proximity to eloquent brain structures. Here, we performed a comprehesive genomic and epigenomic study, using gene expression and methylation microarrays, to research on th different genomic and epigenetic signatures between brainstem, thalamic, and supratentorial gliomas. Comparison of brainstem, thalamic and supratentorial gliomas
Project description:Gliomas arising in the brainstem and thalamus are devastating tumors that are difficult to surgically resect due to their proximity to eloquent brain structures. Here, we performed a comprehesive genomic and epigenomic study, using gene expression and methylation microarrays, to research on th different genomic and epigenetic signatures between brainstem, thalamic, and supratentorial gliomas.
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs.
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs. Two-condition experiment, KP MSCs vs. 3A6 MSCs.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Purpose: More than 90% of children with diffuse intrinsic pontine glioma (DIPG) die within 2 years of diagnosis. There is a dire need to identify therapeutic targets, however lack of patient material for research has limited progress. We evaluated a large cohort of diffuse intrinsic pontine gliomas (DIPGs) to identify recurrent genomic abnormalities and gene expression signatures underlying DIPG. Patients and Methods: We used single nucleotide polymorphism arrays to evaluate genomic copy number imbalances in 43 DIPGs from 40 patients and in 8 low-grade exophytic brainstem gliomas. Gene expression arrays were used to evaluate expression signatures from 27 DIPGs, 6 low-grade exophytic brainstem gliomas and 66 low-grade gliomas arising outside the brainstem. Results: Frequencies of specific large-scale and focal imbalances varied significantly between DIPGs and pediatric glioblastomas outside the brainstem. Focal amplifications of genes within the receptor tyrosine kinase-Ras-PI3-kinase signaling pathway were found in 47% of DIPG, with PDGFRA and MET showing the highest frequency. 30% of DIPG contained focal amplifications of cell-cycle regulatory genes controlling RB phosphorylation, and 21% had concurrent amplification of genes from both pathways. Some tumors showed heterogeneity in amplification patterns. DIPGs showed distinct gene expression signatures relating to developmental processes compared to pediatric glioblastomas arising outside the brainstem, while expression signatures of low-grade exophytic brainstem gliomas were similar to low-grade gliomas outside the brainstem. Copy number analaysis: 43 DIPG samples, 8 Low Grade Gliomas using SNP6.0. Available matched normals are also profiled with SNP6.0. Expression analysis: 29 DIPG samples, 6 Low grade samples Please contact Suzanne Baker at Suzanne.Baker@stjude.org for CEL files and genotype calls.
Project description:Purpose: More than 90% of children with diffuse intrinsic pontine glioma (DIPG) die within 2 years of diagnosis. There is a dire need to identify therapeutic targets, however lack of patient material for research has limited progress. We evaluated a large cohort of diffuse intrinsic pontine gliomas (DIPGs) to identify recurrent genomic abnormalities and gene expression signatures underlying DIPG. Patients and Methods: We used single nucleotide polymorphism arrays to evaluate genomic copy number imbalances in 43 DIPGs from 40 patients and in 8 low-grade exophytic brainstem gliomas. Gene expression arrays were used to evaluate expression signatures from 27 DIPGs, 6 low-grade exophytic brainstem gliomas and 66 low-grade gliomas arising outside the brainstem. Results: Frequencies of specific large-scale and focal imbalances varied significantly between DIPGs and pediatric glioblastomas outside the brainstem. Focal amplifications of genes within the receptor tyrosine kinase-Ras-PI3-kinase signaling pathway were found in 47% of DIPG, with PDGFRA and MET showing the highest frequency. 30% of DIPG contained focal amplifications of cell-cycle regulatory genes controlling RB phosphorylation, and 21% had concurrent amplification of genes from both pathways. Some tumors showed heterogeneity in amplification patterns. DIPGs showed distinct gene expression signatures relating to developmental processes compared to pediatric glioblastomas arising outside the brainstem, while expression signatures of low-grade exophytic brainstem gliomas were similar to low-grade gliomas outside the brainstem.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.
Project description:Interventions: Nucleic acid from tumor tissues and serum SNPs
Primary outcome(s): 1. Tissue biomarkers including mutation, gene expression, and DNA methylation that correlate with efficacy from trifluridine/tipiracil hydrochloride therapy 2. Serum biomarkers including mutation, gene expression, and DNA methylation that correlate with efficacy from trifluridine/tipiracil hydrochloride therapy 3. SNPs that correlate with toxicities from trifluridine/tipiracil hydrochloride therapy
Study Design: Single arm Non-randomized