Project description:In Australian and New Zealand waters, current knowledge on white shark (Carcharodon carcharias) movement ecology is based on individual tracking studies using relatively small numbers of tags. These studies describe a species that occupies highly variable and complex habitats. However, uncertainty remains as to whether the proposed movement patterns are representative of the wider population. Here, we tagged 103 immature Australasian white sharks (147-350 cm fork length) with both acoustic and satellite transmitters to expand our current knowledge of population linkages, spatiotemporal dynamics and coastal habitats. Eighty-three sharks provided useable data. Based on individual tracking periods of up to 5 years and a total of 2,865 days of tracking data, we were able to characterise complex movement patterns over ~45° of latitude and ~72° of longitude and distinguish regular/recurrent patterns from occasional/exceptional migration events. Shark movements ranged from Papua New Guinea to sub-Antarctic waters and to Western Australia, highlighting connectivity across their entire Australasian range. Results over the 12-year study period yielded a comprehensive characterisation of the movement ecology of immature Australasian white sharks across multiple spatial scales and substantially expanded the body of knowledge available for population assessment and management.
Project description:BACKGROUND: The white shark (Carcharodon carcharias) is a globally distributed, apex predator possessing physical, physiological, and behavioral traits that have garnered it significant public attention. In addition to interest in the genetic basis of its form and function, as a representative of the oldest extant jawed vertebrate lineage, white sharks are also of conservation concern due to their small population size and threat from overfishing. Despite this, surprisingly little is known about the biology of white sharks, and genomic resources are unavailable. To address this deficit, we combined Roche-454 and Illumina sequencing technologies to characterize the first transciptome of any tissue for this species. RESULTS: From white shark heart cDNA we generated 665,399 Roche 454 reads (median length 387-bp) that were assembled into 141,626 contigs (mean length 503-bp). We also generated 78,566,588 Illumina reads, which we aligned to the 454 contigs producing 105,014 454/Illumina consensus sequences. To these, we added 3,432 non-singleton 454 contigs. By comparing these sequences to the UniProtKB/Swiss-Prot database we were able to annotate 21,019 translated open reading frames (ORFs) of ? 20 amino acids. Of these, 19,277 were additionally assigned Gene Ontology (GO) functional annotations. While acknowledging the limitations of our single tissue transcriptome, Fisher tests showed the white shark transcriptome to be significantly enriched for numerous metabolic GO terms compared to the zebra fish and human transcriptomes, with white shark showing more similarity to human than to zebra fish (i.e. fewer terms were significantly different). We also compared the transcriptome to other available elasmobranch sequences, for signatures of positive selection and identified several genes of putative adaptive significance on the white shark lineage. The white shark transcriptome also contained 8,404 microsatellites (dinucleotide, trinucleotide, or tetranucleotide motifs ? five perfect repeats). Detailed characterization of these microsatellites showed that ORFs with trinucleotide repeats, were significantly enriched for transcription regulatory roles and that trinucleotide frequency within ORFs was lower than for a wide range of taxonomic groups including other vertebrates. CONCLUSION: The white shark heart transcriptome represents a valuable resource for future elasmobranch functional and comparative genomic studies, as well as for population and other biological studies vital for effective conservation of this globally vulnerable species.
Project description:Here we report the first full mitochondrial genome sequence for a white shark caught in the Atlantic Ocean. The mitochondrial genome is 16,745?bp in length and contains 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and a non-coding control region. The base composition of this mtDNA lineage is A: 30.7%, C: 26.9%, G: 13.8%, and T: 28.6%. In concordance with previous population genetic studies, the Atlantic caught individual forms a separate lineage from individuals caught on either side of the Pacific Ocean.
| S-EPMC7799651 | biostudies-literature
Project description:Carcharodon carcharias (Great white shark) genome, sCarCar2
Project description:White sharks are highly migratory apex predators, globally distributed in temperate, sub-tropical, and tropical waters. Knowledge of white shark biology and ecology has increased recently based on research at known aggregation sites in the Indian, Atlantic, and Northeast Pacific Oceans; however, few data are available for the Northwest Pacific Ocean. This study provides a meta-analysis of 240 observations of white sharks from the Northwest Pacific Ocean between 1951 and 2012. Records comprise reports of bycatch in commercial fisheries, media accounts, personal communications, and documentation of shark-human interactions from Russia (n = 8), Republic of Korea (22), Japan (129), China (32), Taiwan (45), Philippines (1) and Vietnam (3). Observations occurred in all months, excluding October-January in the north (Russia and Republic of Korea) and July-August in the south (China, Taiwan, Philippines, and Vietnam). Population trend analysis indicated that the relative abundance of white sharks in the region has remained relatively stable, but parameterization of a 75% increase in observer effort found evidence of a minor decline since 2002. Reliably measured sharks ranged from 126-602 cm total length (TL) and 16-2530 kg total weight. The largest shark in this study (602 cm TL) represents the largest measured shark on record worldwide. For all countries combined the sex ratio was non-significantly biased towards females (1∶1.1; n = 113). Of 60 females examined, 11 were confirmed pregnant ranging from the beginning stages of pregnancy (egg cases) to near term (140 cm TL embryos). On average, 6.0±2.2 embryos were found per litter (maximum of 10) and gestation period was estimated to be 20 months. These observations confirm that white sharks are present in the Northwest Pacific Ocean year-round. While acknowledging the difficulties of studying little known populations of a naturally low abundance species, these results highlight the need for dedicated research to inform regional conservation and management planning.