Project description:Metagenomes of Saline Desert,Kutch,Gujarat, India, Project-151, Gujarat Genomics Initiative, GSBTM, DST, Gandhinagar, Gujarat, India
Project description:We present metaproteome data from wheat rhizosphere from saline and non-saline soil. For collection and acquisition of metaproteome from wheat rhizosphere under saline and normal conditions, a survey was conducted in regions of Haryana, India. Samples from 65 days old plants (wheat var HD2967) were collected and pooled and based on EC,saline (NBAIM B; EC 6mS cm-1; pH 9.0; Bhaupur 2, Haryana, INDIA; 29°19'8"N;76°48'53"E) and normal soil samples (NBAIM C; EC 200 uS cm-1; pH 7.2; Near Nainform, Haryana, INDIA; 29°19'8"N;76°48'53"E) were selected for isolation of proteome with the standardized protocol at our laboratory followed by metaproteome analysis with the standardized pipepline. In total 1538 and 891 proteins were obtained from wheat rhizosphere from saline and non-saline respectively with the given parameters and software. Among 1410 proteins unique for saline soil, proteins responsible for glycine, serine and threonine metabolism and arginine and proline biosynthesis were found in saline and absent in non-saline. The present study extends knowledge about the physiology and adaptations of the wheat rhizosphere associated microbiota under saline soil.
Project description:Land cover change has long been recognized that marked effect the amount of soil organic carbon. However, little is known about microbial-mediated effect processes and mechanism on soil organic carbon. In this study, the soil samples in a degenerated succession from alpine meadow to alpine steppe meadow in Qinghai-Tibetan Plateau degenerated, were analyzed by using GeoChip functional gene arrays.
Project description:Biological soil crusts (BSCs) are cyanobacteria-dominated microbial communities that cover extensive portions of the world’s arid and semi-arid deserts. The infrequent periods of hydration are often too short to allow for dormancy strategies based on sporulation; consequently, survival is based on the unique capabilities of vegetative cells to resuscitate from and re-enter a stress resistant dormant state, one of which is migration within the crust layers in response to hydration. In this study, we sought to characterize the events that govern the emergence of the dominant cyanobacterium from dormancy, its subsequent growth, and the events triggered by re-desiccation and a transition back to dormant state. We performed a 48 hour laboratory wetting experiment of a desert BSC and tracked the response of Microcoleus vaginatus using a whole genome transcriptional time-course including night/day periods. This allowed the identification of genes with a diel expression pattern, genes involved uniquely in the signaling after hydration and those that contribute primarily to desiccation preparation. Desert BSC samples collected from Moab, UT, were hydrated over a period of 48 hours followed by drying induced by removal of water. At periodic times soil samples were harvested and used for RNA extraction and whole genome expression analysis using an expression array representing genes from two strains of M. vaginatus (PCC 9802 and FGP-2)
Project description:This is a comparative experiments of three barley genotypes harbouring allelic differences at a locus designated QRMC-3HS putatively implicated in the assembly of the microbial communities thriving at the root-soil interface, the so called rhizosphere microbiota. The RNA-seq experiment aimed at identify genes differentially regulated among the genotypes at the locus of interest. As the selected genotypes host contrasting microbiotas, we hypothesised that differentially expressed genes at the locus represent primary candidates for the trait of interest (i.e., microbiota recruitment).