Project description:To elucidate the role of Num1 (Um01682) in Ustilago maydis, the transcriptome of wild type and Num1 deletion mutants was determined by RNAseq after b-heterodimer induction
Project description:The fungus Ustilago maydis is a biotrophic pathogen of corn. In its genome we have identified an ortholog of YAP1 from Saccharomyces cerevisae which regulates the oxidative stress response in this organism. yap1 mutants of U. maydis displayed higher sensitivity to H2O2 than wild type cells and their virulence was significantly reduced. U. maydis yap1 could partially complement the H2O2 sensitivity of a yap1 deletion mutant of S. cerevisiae and a Yap1-GFP fusion protein showed nuclear localization after H2O2 treatment, suggesting that Yap1 in U. maydis functions as a redox sensor. Mutations in two cysteine residues prevented accumulation in the nucleus and the respective mutant strains showed the same virulence phenotype as Dyap1 mutants. DAB staining revealed an accumulation of H2O2 around yap1 mutant hyphae which was absent in wild type. Inhibition of the plant NADPH oxidase prevented this accumulation and restored virulence. During the infection Yap1 showed nuclear localization after penetration up to 2-3 days after infection. Through array analysis a large set of yap1 regulated genes were identified and these included two peroxidase genes. Deletion mutants of these genes were attenuated in virulence. These results suggest that U. maydis is using its yap1 controlled H2O2 detoxification system for coping with early plant defense responses. Keywords: Oxidative stress, yap1 dependent genes, Ustilago maydis
Project description:Ustilago maydis, the causal agent of corn smut disease, is a dimorphic fungus alternating between a saprobic haploid budding form, and an obligate pathogenic filamentous dikaryon. Maize responds to U. maydis colonization by producing highly modified tumorous structures and it is only within these plant galls that the fungus sporulates giving rise to melanized sexual spores, the teliospores. Previously we identified a regulatory protein from the APSES family of transcription factors, which we named Ust1, whose absence in yeast cells led to filamentous growth and the production of highly pigmented spore-like structures in culture. In this study, we analyzed the transcriptome of a ∆ust1 deletion mutant.
Project description:Zea mays transcriptome profiling of infected seedlings by the Ustilago maydis wildtype and the seedling specific effector mutant demonstrated the variation of gene expression in the mutant and the classes of genes that are absent in the mutant as compared to the wildtype U. maydis SG200 strain. Two dye competitive hybridizations were performed on Agilent Oligo arrays.
Project description:In mammalian cells RACK1 serves as a scaffold protein that has a role in integrating inputs from different signaling pathways and affects translation through association with ribosomes. U. maydis contains a seven-WD40 repeat motif protein designated Rak1, which shows 68% identity to RACK1 and is homologous to Asc1p of Saccharomyces cerevisiae. The asc1 mutant could be complemented by introduction of U. maydis rak1. The deletion of rak1 affected cell growth, cell wall integrity and specifically attenuated cell fusion. This latter defect was caused by reduced expression of prf1 encoding the regulator for pheromone and pheromone-receptor genes. Rak1 interacts with a variety of ribosomal proteins and microarray analysis revealed that the deletion of rak1 led to severely reduced expression of rop1, an activator prf1. The constitutive expression of rop1 could rescue the defect of mfa1 expression as well as conjugation tube formation in response to pheromone induction in the rak1 mutant. Moreover, a solopathogenic rak1 mutant failed to respond to plant derived stimuli, resulting in attenuated filamentation and pathogenicity. This could be partially rescued by constitutive expression of the b heterodimer. These data suggest that rak1 is a regulator of rop1 expression with additional roles after cell fusion. Ustilago maydis strains FB1 and FB1?rak1 were grown on a rotary shaker (200 rpm) in liquid Ustilago complete medium with 1% glucose at 28°C to an OD600 of 0.5. The experiment was performed using three independent biological replicates per strain.
Project description:This SuperSeries is composed of the following subset Series: GSE18750: Controlled expression of compatible and incompatible combinations of Ustilago maydis b-mating type locus genes bE and bW GSE18754: Effect of rbf1 deletion during controlled expression of of Ustilago maydis b-mating type locus genes bE1 and bW2 GSE18756: Rbf1 induced gene expression in Ustilago maydis Refer to individual Series
Project description:mRNAs comparison between Ustilago maydis wild type grown in diluted YEPS (control) and in cell-free supernatants of Ustilago maydis wild type treated with H202 in two different concentrations (0.4% and 0.7%).
Project description:The fungus Ustilago maydis is a biotrophic pathogen of corn. In its genome we have identified an ortholog of YAP1 from Saccharomyces cerevisae which regulates the oxidative stress response in this organism. yap1 mutants of U. maydis displayed higher sensitivity to H2O2 than wild type cells and their virulence was significantly reduced. U. maydis yap1 could partially complement the H2O2 sensitivity of a yap1 deletion mutant of S. cerevisiae and a Yap1-GFP fusion protein showed nuclear localization after H2O2 treatment, suggesting that Yap1 in U. maydis functions as a redox sensor. Mutations in two cysteine residues prevented accumulation in the nucleus and the respective mutant strains showed the same virulence phenotype as Dyap1 mutants. DAB staining revealed an accumulation of H2O2 around yap1 mutant hyphae which was absent in wild type. Inhibition of the plant NADPH oxidase prevented this accumulation and restored virulence. During the infection Yap1 showed nuclear localization after penetration up to 2-3 days after infection. Through array analysis a large set of yap1 regulated genes were identified and these included two peroxidase genes. Deletion mutants of these genes were attenuated in virulence. These results suggest that U. maydis is using its yap1 controlled H2O2 detoxification system for coping with early plant defense responses. Keywords: Oxidative stress, yap1 dependent genes, Ustilago maydis Two independent overnight cultures of U. mayidis FB1 and FB1Dyap1 grown in CM-glucose (OD600 0.8) were diluted in 100 ml of the same medium (OD600 0.2) and growth at 28° C until an OD600 0.6. The cultures were divided and one half was supplemented with 5mM H2O2. After one hour of exposition to H2O2, cells were harvested by centrifugation and frozen in liquid nitrogen. RNA extraction, purification, cDNA generation, purification and labeling were performed according to standard protocols (Affymetrix). DNA array analysis was performed performed on two biological replicates each, using custom-designed Affymetrix chips (MPIUstilagoA). Data were analysed using a GeneArray Scanner (Agilent/Affymetrix) and the GeneChip Expression Analysis software (GCOS)
Project description:Study of gene regulation basidiocarps development in Ustilago maydis using transcriptomic analysis. In 2012, Cabrera-Ponce et al. established conditions allowing a completely different developmental program in U. maydis when grown on solid medium containing Dicamba (synthetic auxin) in dual cultures with maize embryogenic calli.