Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other
Project description:Limited therapeutic responses to glucocorticoids in chronic inflammatory disease are partly attributable to interleukins and transforming growth factor-β1 (TGF-β1). Global inhibition of TGF-β1 carries known risks, including autoimmune disease. Here we elucidate the signaling pathway subserving modulation of glucocorticoid activity by TGF-β1. The proteomic response of airway epithelial cells to TGF-β1 revealed 24 candidate proteins of which 3 were prioritized by exclusion of changes induced by: TGF-β2, which lacks the modulatory activity of TGF-β1 and TGF-β3; and those of TGF-β1 that were prevented by small molecule inhibitors of non-canonical TGF-β1 signaling, that did not prevent glucocorticoid modulation. Pharmacological and genetic approaches establish that TGF-β1-induced glucocorticoid insensitivity is mediated by a novel signaling cascade involving LIM domain kinase 2 mediated phosphorylation of phospho-cofilin1 that activates phospholipase D to generate the effector(s) (lyso)phophatidic acid. This study identifies several promising drug targets that potentially enable safe modulation of TGF-β1 in chronic inflammatory diseases.
Project description:We studied miRNAs and their gene targets affecting SARS-CoV-2 pathogenesis in CF airway epithelial cell models in response to TGF-β1. Small RNAseq in CF human bronchial epithelial cell line treated with TGF-β1 and miRNA profiling characterized TGF-β1 effects on the SARS-CoV-2 pathogenesis pathways. Among the effectors, we identified and validated two miRNAs targeting ACE2 mRNA using different CF and non-CF human bronchial epithelial cell models. We have shown that TGF-β1 inhibits ACE2 expression by miR-136-3p and miR-369-5p. ACE2 levels were higher in cells expressing F508del-CFTR, compared to wild-type(WT)-CFTR and TGF-β1 inhibited ACE2 in both cell types. The ACE2 protein levels were still higher in CF, compared to non-CF cells after TGF-β1 treatment. TGF-β1 prevented the functional rescue of F508del-CFTR by ETI in primary human bronchial epithelial cells while ETI did not prevent the TGF-β1 inhibition of ACE2 protein. Finally, TGF-β1 reduced binding of ACE2 to the recombinant monomeric spike RBD. Our results may help to explain, at least in part, the role of TGF-β1 on the SARS-CoV-2 entry via ACE2 in the CF and non-CF airway.
Project description:We found that BAP1 (BRCA1 Associated Protein-1) shows loss of heterozygosity in over 25% of pancreatic cancer patients and functions as tumor suppressor. Conditional deletion of Bap1 in murine pancreas led to genomic instability, accumulation of DNA damage, and an inflammatory response that evolved to pancreatitis with full penetrance. Concomitant expression of oncogenic KrasG12D led to malignant transformation and development of invasive and metastatic pancreatic cancer. At the molecular level, BAP1 maintains the integrity of the exocrine pancreas by regulating genomic stability and its loss confers sensitivity to radio- and platinum-based therapies.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Fibrotic diseases have significant health impact and have been associated with differentiation of the resident fibroblasts into myofibroblasts. In particular, stiffened extracellular matrix and TGF-β1 in fibrotic lesions have been shown to promote pathogenic myofibroblast activation and progression of fibrosis in various tissues. To better understand the roles of mechanical and chemical cues on myofibroblast differentiation and how they may crosstalk, we cultured primary valvular interstitial cells (VICs) isolated from porcine aortic valves and studied how traditional TCPS culture, which presents a non-physiologically stiff environment, and TGF-β1 affect native VIC phenotypes. We carried out gene expression profiling using porcine genome microarrays from Affymetrix and found that traditional TCPS culture induces major changes in gene expression of native VICs, rendering these cells more activated and similar to cells treated with TGF-β1. We also monitored time-dependent effects induced by TGF-β1 by examining gene expression changes induced by TGF-β1 at 8 hours and 24 hours. Porcine aortic VICs were isolated and cultured with or without TGF-β1 treatment for RNA extraction and hybridization on Affymetrix microarrays. We included 3 biological replicates for each condition. P0 VICs were freshly isolated cells which had not been cultured. P2 VICs were cells that had been passaged 2 times and cultured on plastic plates in low serum media. Some of the P2 VICs were treated with TGF-β1 at 5ng/ml for 8 hours or 24 hours. All the control and TGF-β1-treated conditions were collected at the same time on day 3 of culture.
Project description:Hepatic stellate cell (HSC) activation induced by transforming growth factor β (TGF-β1) plays a pivotal role in the fibrogenesis. The complex downstream mediators of TGF-β1 are largely unknown. Here, proteomics analysis and biological validation demonstrated that methionine adenosyltransferase 2A (MAT2A) was significantly upregulated in a CCl4-induced fibrosis mice model and a small molecule NPLC0393, known to block TGF-β1/Smad3 signaling, inhibited its upregulation. In HSC cells, TGF-β1 induced elevation of MAT2A and MAT2β expression as well as reduction of S-adenosylmethionine (SAM) content, which further promoted HSC activation. Functionally, in vivo and in vitro knockdown of MAT2A alleviated CCl4- and TGF-β1-induced HSC activation, whereas in vivo overexpression of MAT2A facilitated hepatic fibrosis and abolished therapeutic effect of NPLC0393. TGF-β1 induced p65 phosphorylation and NF-κB activation, thereby promoted the transcription of MAT2A and its protein expression. In addition, overexpression of p65 abrogated NPLC0393 mediated inhibition of HSC activation. This study identified a novel pathway TGF-β1/p65/MAT2A that was involved in the regulation of intracellular SAM contents and liver fibrogenesis, suggesting that this pathway is a potential therapeutic target for hepatic fibrosis.
Project description:Hepatic stellate cell (HSC) activation induced by transforming growth factor β (TGF-β1) plays a pivotal role in the fibrogenesis. The complex downstream mediators of TGF-β1 are largely unknown. Here, proteomics analysis and biological validation demonstrated that methionine adenosyltransferase 2A (MAT2A) was significantly upregulated in a CCl4-induced fibrosis mice model and a small molecule NPLC0393, known to block TGF-β1/Smad3 signaling, inhibited its upregulation. In HSC cells, TGF-β1 induced elevation of MAT2A and MAT2β expression as well as reduction of S-adenosylmethionine (SAM) content, which further promoted HSC activation. Functionally, in vivo and in vitro knockdown of MAT2A alleviated CCl4- and TGF-β1-induced HSC activation, whereas in vivo overexpression of MAT2A facilitated hepatic fibrosis and abolished therapeutic effect of NPLC0393. TGF-β1 induced p65 phosphorylation and NF-κB activation, thereby promoted the transcription of MAT2A and its protein expression. In addition, overexpression of p65 abrogated NPLC0393 mediated inhibition of HSC activation. This study identified a novel pathway TGF-β1/p65/MAT2A that was involved in the regulation of intracellular SAM contents and liver fibrogenesis, suggesting that this pathway is a potential therapeutic target for hepatic fibrosis.