Project description:The profiling was conducted with the Rice 3'-Tiling 135k Microarray designed from 31,439 genes deposited at IRGSP, RAP2 database (http://rapdb.lab.nig.ac.jp). In this research, an array of 31,439 rice genes was used to elucidate gene expression in leaf and panicles of non-transgenic and HMB4 over-expression line. The analyses show that transgenic rice induces early flowering due to an enhancement of stress response.
Project description:The profiling was conducted with the Rice 3'-Tiling 135k Microarray designed from 31,439 genes deposited at IRGSP, RAP2 database (http://rapdb.lab.nig.ac.jp). In this research, an array of 31,439 rice genes was used to elucidate gene expression in leaf and panicles of non-transgenic and HMB4 over-expression line. The analyses show that transgenic rice induces early flowering due to an enhancement of stress response. A total of 20 chips were used for microarray. Total RNAs were extracted from rice leaf and panicle. Experiments were duplicated.
Project description:Phosphate starvation/sufficient rice seedling, root or shoot Pi-starvation or Pi-sufficient stresses responsible rice genes, including previously unannotated genes were identified by Illumina mRNA-seq technology. 53 million reads from Pi-starvation or Pi-sufficient root or shoot tissues were uniquely mapped to the rice genome, and these included 40574 RAP3 transcripts in root and 39748 RAP3 transcripts in shoot. We compared our mRNA-seq expression data with that from Rice 44K oligomicroarray, and about 95.5% (root) and 95.4% (shoot) transcripts supported by the array were confirmed expression both by the array and by mRNA-seq, Moreover, 11888 (root) and 11098 (shoot) RAP genes which were not supported by array, were evidenced expression with mRNA-seq. Furthermore, we discovered 8590 (root) and 8193 (shoot) previously unannotated transcripts upon Pi-starvation and/or Pi-sufficient.
Project description:A total of 18 libraries from Setaria viridis were constructed using the Illumina TruSeq sample preparation method. We used two biological replicate libraries from the leaf, whole panicles (inside leaf sheath), whole panicles (coming out of leaf sheath), whole panicles (completely out of leaf sheath), whole panicles (completely out of leaf sheath, after pollination), spikelet (inside leaf sheath), spikelet (coming out of leaf sheath), and spikelet (completely out of leaf sheath).
Project description:Small RNA and PARE sequencing in rice (photoperiod sensitive male sterility lines and wild type) panicles under long-day and short-day conditions
Project description:Here, we first reported the construction of a phosphoproteomic landscape of 6 tissues, including callus, leaves, roots, shoot meristem (SM), young panicles (YP) and mature panicles (MP), from Nipponbare (Oryza sativa ssp. japonica). By employing a non-gel, quantitative phosphoproteomic approach, a total of 4792 phosphopeptides from 2657 phosphoproteins were identified, which were found to be differentially phosphorylated among tissues.
Project description:To investigate the role of OsGSE9 in grain shape, we generate its overexpressing lines, and knockout lines by CRISPR/Cas9 system. We then performed gene expression profiling analysis using data obtained from RNA-seq of the panicles of the WT and OsGSE9 transgenic lines