Project description:BackgroundThe leaf-cutter ant Atta laevigata (Formicidae: Attini) is an agricultural pest largely distributed in the Neotropics and a model organism for studies of evolution, speciation and population genetics. Microsatellites are a very powerful tool for these kind of studies, but such markers are not available for studies on A. laevigata. In the present report, we describe the isolation and characterization of nine microsatellite loci in A. laevigata and the testing of these markers across other species of leaf-cutter ants.FindingsNine microsatellite loci, consisting of six dinucloeotide, one trinucleotide, one tetranucleotide, and one di/trinucleotide repeat motifs, were isolated and characterized. Primers and protocols were successfully designed to selectively amplify these markers. To test effectiveness of these markers for detailed population genetic studies, we genotyped female workers collected from 36 monogynic nests of A. laevigata and found that eight loci were within Hardy-Weinberg expectations, while the remaining locus had a deficiency of heterozygotes. Micro-Checker analysis of individuals from 55 monogynic nests indicated that loci Alae11, Alae24, Alae18 showed signs of null alleles. For the remaining six loci, the number of alleles per locus ranged between 2 and 11, with expected heterozygosity ranging between 0.07 and 0.88. All of these loci cross-amplified in other species of Atta.ConclusionsThese six polymorphic microsatellite loci should prove useful for future genetic investigations of the pest species Atta laevigata, as well as studies of other species of leaf-cutter ants in the genus Atta.
Project description:BACKGROUND:Leafcutters are the highest evolved within Neotropical ants in the tribe Attini and model systems for studying caste formation, labor division and symbiosis with microorganisms. Some species of leafcutters are agricultural pests controlled by chemicals which affect other animals and accumulate in the environment. Aiming to provide genetic basis for the study of leafcutters and for the development of more specific and environmentally friendly methods for the control of pest leafcutters, we generated expressed sequence tag data from Atta laevigata, one of the pest ants with broad geographic distribution in South America. RESULTS:The analysis of the expressed sequence tags allowed us to characterize 2,006 unique sequences in Atta laevigata. Sixteen of these genes had a high number of transcripts and are likely positively selected for high level of gene expression, being responsible for three basic biological functions: energy conservation through redox reactions in mitochondria; cytoskeleton and muscle structuring; regulation of gene expression and metabolism. Based on leafcutters lifestyle and reports of genes involved in key processes of other social insects, we identified 146 sequences potential targets for controlling pest leafcutters. The targets are responsible for antixenobiosis, development and longevity, immunity, resistance to pathogens, pheromone function, cell signaling, behavior, polysaccharide metabolism and arginine kynase activity. CONCLUSION:The generation and analysis of expressed sequence tags from Atta laevigata have provided important genetic basis for future studies on the biology of leaf-cutting ants and may contribute to the development of a more specific and environmentally friendly method for the control of agricultural pest leafcutters.
Project description:In this paper we describe the nearly complete mitochondrial genome of the leaf-cutter ant Atta laevigata, assembled using transcriptomic libraries from Sanger and Illumina next generation sequencing (NGS), and PCR products. This mitogenome was found to be very large (18,729 bp), given the presence of 30 non-coding intergenic spacers (IGS) spanning 3,808 bp. A portion of the putative control region remained unsequenced. The gene content and organization correspond to that inferred for the ancestral pancrustacea, except for two tRNA gene rearrangements that have been described previously in other ants. The IGS were highly variable in length and dispersed through the mitogenome. This pattern was also found for the other hymenopterans in particular for the monophyletic Apocrita. These spacers with unknown function may be valuable for characterizing genome evolution and distinguishing closely related species and individuals. NGS provided better coverage than Sanger sequencing, especially for tRNA and ribosomal subunit genes, thus facilitating efforts to fill in sequence gaps. The results obtained showed that data from transcriptomic libraries contain valuable information for assembling mitogenomes. The present data also provide a source of molecular markers that will be very important for improving our understanding of genomic evolutionary processes and phylogenetic relationships among hymenopterans.
Project description:Certain species of parasitic flies belonging to the Phoridae are known to attack Atta spp. workers foraging along trails, near nest openings used by the ants to supply the colony with plant material, and in the areas where the ants are actively cutting plant material. However, there have been no previous studies of phorid parasitism of non-foraging worker ants, for example excavators and soldiers. Excavators can be found on the surface around specialized nest openings, carrying and dumping soil on characteristic mounds. Soldiers can be found on the trails protecting foragers or guarding the different types of nest openings. The current study was performed to investigate the differential parasitism rates of Atta laevigata (Smith, 1858) worker castes by four species of phorids. Ants of all castes on trails and at nest entrances were collect from 18 mature colonies in the field. A total of 21,254 ants were collected from trails and 14,649 collected from the mounds of loose soil near nest openings. The captured workers were maintained under controlled laboratory conditions to evaluate the rate of parasitism. Of the ants collected from trails, 1,112 (5.23%) were found to have been parasitized, of which 1,102 were foragers and only 10 were soldiers. Of the ants collected from the soil mounds near the nest openings, only 27 (0.18%) were found to have been parasitized, of those 25 were excavators and 2 were soldiers. When evaluating parasitism of ants on the trails, 46.2% were attacked by Apocephalus attophilus Borgmeier, 1928, 22.6% by Myrmosicarius grandicornis Borgmeier, 1928, 16.6% by Eibesfeldtphora erthali (Brown, 2001) and 14.6% by Apocephalus vicosae Disney, 2000. Only two species of phorid, M. grandicornis and E. erthali, were observed parasitizing excavators, whilst only E. erthali parasitized soldiers. This is the first time that Atta spp. excavators and soldiers have been shown to be parasitized by phorids. The low rates of parasitism and specificity of certain phorid species for excavators and soldiers is discussed in relation to the behavioral interactions of hosts and their parasitoids, as well as the relationship between host and parasitoid size.
| S-EPMC8099092 | biostudies-literature
Project description:complete mitochondrial genome of an ant
Project description:Background:Ecosystem engineers are species that transform habitats in ways that influence other species.While the impacts of many engineers have been well described, our understanding of how their impact varies along environmental gradients remains limited. Although disentangling the effects of gradients and engineers on biodiversity is complicated-the gradients themselves can be altered by engineers-doing so is necessary to advance conceptual and mathematical models of ecosystem engineering. We used leaf-cutter ants (Atta spp.) to investigate the relative influence of gradients and environmental engineers on the abundance and species richness of woody plants. Methods:We conducted our research in South America's Cerrado. With a survey of plant recruits along a canopy cover gradient, and data on environmental conditions that influence plant recruitment, we fit statistical models that addressed the following questions: (1) Does A. laevigata modify the gradient in canopy cover found in our Cerrado site? (2) Do environmental conditions that influence woody plant establishment in the Cerrado vary with canopy cover or proximity to A. laevigata nests? (3) Do A. laevigata and canopy cover act independently or in concert to influence recruit abundance and species richness? Results:We found that environmental conditions previously shown to influence plant establishment in the Cerrado varied in concert with canopy cover, but that ants are not modifying the cover gradient or cover over nests. However, ants are modifying other local environmental conditions, and the magnitude and spatial extent of these changes are consistent across the gradient. In contrast to prior studies, we found that ant-related factors (e.g., proximity to nests, ant changes in surface conditions), rather than canopy cover, had the strongest effect on the abundance of plant recruits. However, the diversity of plants was influenced by both the engineer and the canopy cover gradient. Discussion:Atta laevigata in the Cerrado modify local conditions in ways that have strong but spatially restricted consequences for plant communities. We hypothesize that ants indirectly reduce seedling establishment by clearing litter and reducing soil moisture, which leads to seed and seedling desiccation. Altering soil nutrients could also reduce juvenile growth and survivorship; if so these indirect negative effects of engineering could exacerbate their direct effects of harvesting plants. The effects of Atta appear restricted to nest mounds, but they could be long-lasting because mounds persist long after a colony has died or migrated. Our results support the hypothesis that leaf-cutter ants play a dominant role in Cerrado plant demography. We suggest the ecological and economic footprint of these engineers may increase dramatically in coming decades due to the transformation of the Cerrado by human activities.