Project description:Young adult fer-15;fem-1 Caenorhabditis elegans were infected with Staphylococcus aureus for 8 h to determine the transcriptional host response to Staphylococcus aureus. Analysis of differential gene expression in C. elegans young adults exposed to two different bacteria: E. coli strain OP50 (control), wild-type Staphylococcus aureus RN6390. Samples were analyzed at 8 hours after exposure to the different bacteria. These studies identified C. elegans genes induced by pathogen infection. Keywords: response to pathogen infection, innate immunity, host-pathogen interactions
Project description:Methicillin-resistant Staphylococcus aureus (MRSA) infections result in more than 200,000 hospitalizations and 10,000 deaths in the United States each year and remain an important medical challenge. To better understand the transcriptome of Staphylococcus aureus USA300 NRS384, a community-acquired MRSA strain, we have conducted an RNA-Seq experiment on WT samples.
Project description:Staphylococcus aureus is one of the most important pathogens in humans and animals, multiply resistant strains are increasingly widespread, new agents are needed for the treatment of S. aureus. Rhein, a natural plant product, has potential antimicrobial activity against Staphylococcus aureus. We employed Affymetrix Staphylococcus aureus GeneChipsTM arrays to investigate the global transcriptional profiling of Staphylococcus aureus ATCC25923 treated with rhein. Results provided insight into mechanisms involved in rhein - Staphylococcus aureus interactions. Keywords: rhein response
Project description:Investigation of mRNA expression level changes in a Staphylococcus aureus Mu50 delta-SAV1322 mutant, compared to the wild-type strain. A comparison of the wild-type and the mutant transcription profiles
Project description:Staphylococcus aureus (S. aureus) is an important human and animal pathogen, multiply resistant strains are increasingly widespread, new agents are needed for the treatment of S. aureus. magnolol has potent antimicrobial activity against S. aureus. We employed Affymetrix Staphylococcus aureus GeneChipsTM arrays to investigate the global transcriptional profiling of Staphylococcus aureus ATCC25923 treated with magnolol. Keywords: gene expression array-based, count
Project description:Staphylococcus aureus (S. aureus) is an important human and animal pathogen, multiply resistant strains are increasingly widespread, new agents are needed for the treatment of S. aureus. eugenol, a natural plant product, has potent antimicrobial activity against S. aureus. We employed Affymetrix Staphylococcus aureus GeneChipsTM arrays to investigate the global transcriptional profiling of Staphylococcus aureus ATCC25923 treated with eugenol. Keywords: gene expression array-based, count
Project description:Staphylococcus aureus (S. aureus) is an important human and animal pathogen, multiply resistant strains are increasingly widespread, new agents are needed for the treatment of S. aureus. Cryptotanshinone, a natural plant product, has potent antimicrobial activity against S. aureus. We employed Affymetrix Staphylococcus aureus GeneChipsTM arrays to investigate the global transcriptional profiling of Staphylococcus aureus ATCC25923 treated with cryptotanshinone. Keywords: gene expression array-based, count
Project description:Staphylococcus aureus (S. aureus) is an important human and animal pathogen, multiply resistant strains are increasingly widespread, new agents are needed for the treatment of S. aureus. sodium houttuyfonate has potent antimicrobial activity against S. aureus. We employed Affymetrix Staphylococcus aureus GeneChipsTM arrays to investigate the global transcriptional profiling of Staphylococcus aureus ATCC25923 treated with sodium houttuyfonate. Keywords: gene expression array-based, count
Project description:Analysis of strain-specific HUVEC gene expression as a response to infection by selected sepsis isolates of Staphylococcus aureus. Previous study showed great heterogeneity of endothelium pro-inflammatory response, cell death induction and translocation of bacteria through the endothelium barrier. The focus of this study was to investigate different endothelial gene expression patterns which might correspond to activation of different pathways determining various behaviour of the endothelium to the infection. Results give important information on strain-specific endothelium gene response to Staphylococcus aureus infection and give hints about important key players involved in strain-specific endothelium responses.