Project description:Pseudomonas putida DLL-E4 can efficiently degrade para-nitrophenol and its intermediate metabolite hydroquinone. The regulation of para-nitrophenol degradation was studied, and PNP induced a global change in the transcriptome of P. putida DLL-E4. When grown on PNP, the wild-type strain exhibited significant downregulation of 2912 genes and upregulation of 845 genes, whereas 2927 genes were downregulated and 891 genes upregulated in a pnpR-deleted strain. Genes related to two non-coding RNAs (ins1 and ins2), para-nitrophenol metabolism, the tricarboxylic acid cycle, the outer membrane porin OprB, glucose dehydrogenase Gcd, and carbon catabolite repression were significantly upregulated when cells were grown on para-nitrophenol plus glucose. pnpA, pnpR, pnpC1C2DECX1X2, and pnpR1 are key genes in para-nitrophenol degradation, whereas pnpAb and pnpC1bC2bDbEbCbX1bX2b have lost the ability to degrade para-nitrophenol. Multiple components including transcriptional regulators and other unknown factors regulate para-nitrophenol degradation, and the transcriptional regulation of para-nitrophenol degradation is complex. Glucose utilization was enhanced at early stages of para-nitrophenol supplementation. However, it was inhibited after the total consumption of para-nitrophenol. The addition of glucose led to a significant enhancement in para-nitrophenol degradation and up-regulation in the expression of genes involved in para-nitrophenol degradation and carbon catabolite repression (CCR). It seemed that para-nitrophenol degradation can be regulated by CCR, and relief of CCR might contribute to enhanced para-nitrophenol degradation. In brief, the regulation of para-nitrophenol degradation seems to be controlled by multiple factors and requires further study.
Project description:The entire set of flagellar structural components and flagellar-specific transcriptional regulators, as well as much of the core chemotaxis machinery, is encoded into a >70 kbp cluster in Pseudomonas putida KT2440 genome. We have performed RNA-seq of the wild-type strain in order to identify operon boundaries and promoters location in this cluster.
Project description:The first complete genome sequence of a p-nitrophenol (PNP)-degrading bacterium is reported here. Pseudomonas putida DLL-E4, a Gram-negative bacterium isolated from methyl-parathion-polluted soil, can utilize PNP as the sole carbon and nitrogen source. P. putida DLL-E4 has a 6,484,062 bp circular chromosome that contains 5,894 genes, with a G+C content of 62.46%.
Project description:KaiC is the central cog of the circadian clock in Cyanobacteria. Close homologs of this protein are widespread among bacteria not known to have a circadian physiology. The function, interaction network, and mechanism of action of these KaiC homologs are still largely unknown. Here, we focus on KaiC homologs found in environmental Pseudomonas species. We characterize experimentally the only KaiC homolog present in Pseudomonas putida KT2440 and Pseudomonas protegens CHA0. Through phenotypic assays and transcriptomics, we show that KaiC is involved in osmotic and oxidative stress resistance in P. putida and in biofilm production in both P. putida and P. protegens.
Project description:Pseudomonas putida S12 is an inherently solvent-tolerant strain and constitutes a promising platform for biotechnology applications in whole-cell biocatalysis of aromatic compounds. The genome of P. putida S12 consists of a 5.8 Mbp chromosome and a 580 kbp megaplasmid pTTS12. pTTS12 encodes several genes which enable the tolerance to various stress conditions, including the main solvent efflux pump SrpABC. Removal (curing) of megaplasmid pTTS12 and subsequent loss of solvent efflux pump SrpABC caused a significant reduction in solvent tolerance of the resulting strain. In this study, we succeeded in restoring solvent tolerance in the megaplasmid-cured P. putida S12 using adaptive laboratory evolution (ALE) and molecular analysis to investigate the intrinsic solvent tolerance of P. putida S12. RNA-seq was performed to study the global transcriptomic response of the solvent-adapted plasmid-cured P. putida S12 in the presence of toluene. This analysis revealed the downregulation of ATP synthase, flagella and other RND efflux pumps, which indicates the importance of maintaining proton motive force during solvent stress.
Project description:The metabolically versatile Pseudomonas putida strain KT2440 is the first Gram-negative soil bacterium certified as a biosafety strain and is being used for applications in agriculture, biotechnology and bioremediation. P. putida has to cope in its niche with numerous abiotic stresses. The stress response to 4°C, pH 4.5, 0.8 M urea or 45 mM sodium benzoate, respectively, was analyzed by the global mRNA expression profile and screening for stress-intolerant Tn5 transposon mutants. In total we identified 49 gene regions to be differentially expressed and 32 genes in 22 operons to be indispensable for growth during exposure to one or the other abiotic stresses. We propose that stress is sensed by the outer membrane proteins OmlA and FepA and the inner membrane constituents PtsP, PhoPQ and CbrAB. The metabolic response is regulated by the cyo operon, the RelA/SpoT modulon, PcnB and VacB that control mRNA stability and BipA that exerts transcript-specific translational control. The adaptation of the membrane barrier, the uptake of phosphate, the maintenance of intracellular pH and redox status and the translational control of metabolism are the indispensable key mechanisms of the P. putida stress response. Keywords: functional genomics