Project description:To investigate whether IDH1 mutation influence the effects of oncolytic virus VSVΔ51, we transduced doxycycline-inducible IDH1-R132H lentiviruses into LN-229 to establish the LN-229-TRE-R132H cell line. We then performed gene expression profiling analysis using data obtained from RNA-seq of LN-229-TRE-R132H cells infected with or without VSVΔ51 in the presence or absence of IDH1 mutation induced by doxycycline.
Project description:Glioblastoma is the most aggressive primary brain tumor in adults and due to the invasive nature it cannot be completely removed. We have recently shown that the WNT inhibitory factor 1 (WIF1), a secreted inhibitor of WNTs, is downregulated in glioblastoma and acts as strong tumor suppressor. In search of a mediator for this function differential gene expression profiles of WIF1-expressing cells were performed. MALAT1, a long non-coding RNA and key positive regulator of invasion, emerged as the top downregulated gene. Indeed, knock-down of MALAT1 reduced migration in glioblastoma cells, without effect on proliferation. LN-229 cells induced with Doxocyclin to express WIF1 were compared to the non-induced control (two biological replicates each)
Project description:We analyzed, by HTA 2.0, the GBM cell lines LN-18, LN-229, and U-87 MG after fluoresence-activated cell sorting (FACS) into ABCB5+ and ABCB5- fractions. Poor prognosis associated with glioblastoma multiforme (GBM) results from tumor resistance to therapy and high rate of recurrence. Compelling evidence suggests this is driven by subpopulations of slow-proliferating cancer stem cells with tumor-initiating potential. ATP-binding cassette member B5 (ABCB5) has been identified as a molecular marker for distinct subsets of chemoresistant tumor-initiating cell populations in diverse human malignancies. In the current study, we examined the potential role of ABCB5 in growth and chemoresistance of GBM. We found ABCB5 to be preferentially expressed in clinical GBM tumors and co-expressed with the stem cell marker CD133 in subpopulations of human GBM cell lines U-87 MG, LN-18 and LN-229. Antibody-mediated functional ABCB5 blockade inhibited proliferation and survival of human GBM cells and sensitized them to temozolomide (TMZ)-induced apoptosis. Likewise, in an in vivo GBM xenograft study in immunodeficient mice, anti-ABCB5 monoclonal antibody treatment inhibited tumor growth and sensitized tumors to TMZ therapy. Mechanistically, we demonstrated that ABCB5 regulates cell cycle checkpoint molecules to revoke drug-induced G2-M arrest and augments drug-mediated cell death. Overall, our data establish ABCB5 as a marker of GBM chemoresistance and point to the potential of ABCB5 targeting in improvement of current GBM therapies.
Project description:JMJD1C shows ubiquitous expression and is often downregulated in tumor entities compared to healthy tissues.JMJD1C inhibit growth of the glioblastoma cell line LN-229. Here, JMJD1C knockdown leads to malignant progression in the glioblastoma cell line LN-229.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:This study aims to identify EV-derived glioblastoma biomarkers through a comparative mass spectrometry-based bottom-up proteomic analysis of glioblastoma LN-229 cell line and healthy human neurons, astrocytes, and endothelial brain cells (HEBC). The work investigates cancer cells' communication with the healthy brain environment
Project description:As the evolution of miRNA genes has been found to be one of the important factors in formation of the modern type of man, we performed a comparative analysis of the evolution of miRNA genes in two archaic hominines, Homo sapiens neanderthalensis and Homo sapiens denisova, and elucidated the expression of their target mRNAs in bain.A comparative analysis of the genomes of primates, including species in the genus Homo, identified a group of miRNA genes having fixed substitutions with important implications for the evolution of Homo sapiens neanderthalensis and Homo sapiens denisova. The mRNAs targeted by miRNAs with mutations specific for Homo sapiens denisova exhibited enhanced expression during postnatal brain development in modern humans. By contrast, the expression of mRNAs targeted by miRNAs bearing variations specific for Homo sapiens neanderthalensis was shown to be enhanced in prenatal brain development.Our results highlight the importance of changes in miRNA gene sequences in the course of Homo sapiens denisova and Homo sapiens neanderthalensis evolution. The genetic alterations of miRNAs regulating the spatiotemporal expression of multiple genes in the prenatal and postnatal brain may contribute to the progressive evolution of brain function, which is consistent with the observations of fine technical and typological properties of tools and decorative items reported from archaeological Denisovan sites. The data also suggest that differential spatial-temporal regulation of gene products promoted by the subspecies-specific mutations in the miRNA genes might have occurred in the brains of Homo sapiens denisova and Homo sapiens neanderthalensis, potentially contributing to the cultural differences between these two archaic hominines.