Project description:Innate immune responses must be regulated in the intestine to prevent excessive inflammation. Here, using gene reporter mice, we show that a subset of mouse colonic macrophages constitutively produced the anti-inflammatory cytokine IL-10. In mice infected with Citrobacter rodentium, which is considered similar to enteropathogenic Escherichia coli infection in humans, macrophage IL-10 was required to prevent intestinal pathology and to promote survival. The synthesis of the proinflammatory cytokine IL-23 was significantly increased in infected mice with a myeloid cell specific deletion of IL-10 and the addition of IL-10 reduced in vitro IL-23 production by intestinal macrophages. Furthermore, blockade of IL-23 led to reduced morbidity and mortality in the context of macrophage IL-10 deficiency. Transcriptome analysis indicated that the reporter positive and negative colonic macrophage subsets were highly similar, but the reporter positive cells differed for the expression of CD163, an IL-10 target gene, suggesting an autocrine IL-10 signal, and when obtained from infected mice, they had reduced IL-23p19 mRNA. Interestingly, only transfer of the reporter positive cells could rescue IL-10 deficient infected mice. Therefore, these data indicate a pivotal role for a subset of intestinal macrophages that constitutively produces IL-10, perhaps acting in part in autocrine fashion, in controlling excessive innate immune activation, regulation of IL-23 production, and prevention of tissue damage after an acute bacterial infection in the intestine. Two replicates each of IL10+ and IL10- large intestinal macrophages. Data were normalized with the 'rma' function of the Bioconductor package, along with several GEO (GSM616132, GSM616136, GSM616140, GSM868296, GSM868297, GSM868298) and ArrayExpress (E-MEXP-3216: 04-M2WT, 05-M2WT, 06-M2WT) datasets.
Project description:Innate immune responses must be regulated in the intestine to prevent excessive inflammation. Here, using gene reporter mice, we show that a subset of mouse colonic macrophages constitutively produced the anti-inflammatory cytokine IL-10. In mice infected with Citrobacter rodentium, which is considered similar to enteropathogenic Escherichia coli infection in humans, macrophage IL-10 was required to prevent intestinal pathology and to promote survival. The synthesis of the proinflammatory cytokine IL-23 was significantly increased in infected mice with a myeloid cell specific deletion of IL-10 and the addition of IL-10 reduced in vitro IL-23 production by intestinal macrophages. Furthermore, blockade of IL-23 led to reduced morbidity and mortality in the context of macrophage IL-10 deficiency. Transcriptome analysis indicated that the reporter positive and negative colonic macrophage subsets were highly similar, but the reporter positive cells differed for the expression of CD163, an IL-10 target gene, suggesting an autocrine IL-10 signal, and when obtained from infected mice, they had reduced IL-23p19 mRNA. Interestingly, only transfer of the reporter positive cells could rescue IL-10 deficient infected mice. Therefore, these data indicate a pivotal role for a subset of intestinal macrophages that constitutively produces IL-10, perhaps acting in part in autocrine fashion, in controlling excessive innate immune activation, regulation of IL-23 production, and prevention of tissue damage after an acute bacterial infection in the intestine.
Project description:Understanding the mechanisms of host macrophage responses to M. tuberculosis (M.tb.) is essential for uncovering potential avenues of intervention to boost host resistance to infection. Macrophage transcriptome profiling revealed M.tb. infection strongly induced expression of several enzymes controlling tryptophan (Trp) catabolism. This included indole 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO2), which catalyze the rate-limiting step in the kynurenine pathway, producing ligands for the aryl hydrocarbon receptor (AHR). The AHR and heterodimeric partners AHR nuclear translocator (ARNT) and RELB are robustly expressed, and AHR and RELB levels further increased during infection. Infection enhanced AHR/ARNT and AHR/RELB DNA binding, and stimulated expression of AHR target genes, including that encoding the inflammatory cytokine IL1beta. AHR target gene expression was further enhanced by exogenous kynurenine, and exogenous Trp, kynurenine or synthetic agonist indirubin reduced mycobacterial viability. Comparative expression profiling revealed that AHR ablation diminished expression of numerous genes implicated in innate immune responses, including several cytokines. Notably, AHR depletion reduced expression of IL23A and IL12B transcripts, which encode subunits of interleukin 23 (IL23), a macrophage cytokine that stimulates production of IL22 by innate lymphoid cells. The AHR directly induced IL23A transcription in human and mouse macrophages through near-upstream enhancer regions. Taken together, these findings show that AHR signaling is strongly engaged in Mtb-infected macrophages, and has widespread effects on innate immune responses. Moreover, they reveal a cascade of AHR-driven innate immune signaling, as IL1B (IL-1β) and IL23 stimulate T cell subsets producing IL22, another direct target of AHR transactivation. Gene expression profiling of Mtb-infected THP-1 monocytic cells following siRNA-mediated Aryl hydrocarbon receptor (AHR) knockdown.
Project description:The TSC/mTOR (tuberous sclerosis complex/mammalian target of rapamycin) pathway has a central role in cell growth and is involved in human tumorigenesis. Here, we demonstrate an unexpected role of TSC2 and mTOR in regulating key inflammatory cytokines in monocytes, macrophages, and dendritic cells after bacterial stimulation. mTOR deficiency promoted IL-12/IL-23 and blocked IL-10 production via the transcription factor NF-kB. Conversely, loss of TSC2, a key negative regulator of mTOR, led to reduced NF-kB activity, limited IL-12 but enhanced IL-10 production. Transcriptional profiling demonstrated that mTOR additionally regulated many mediators important for inflammation and immunoregulation including PD-L1, CCR5, CCL22, and MCP-1. mTOR inhibition in vivo rescued susceptible mice from a lethal Listeria monocytogenes infection by modulating IL-12/IL-10 production. These data identify the TSC2/mTOR pathway as a novel pathway in innate immune responses by controlling NF-kB with profound clinical implications for infectious diseases, cancer, or transplantation. Keywords: inflammatory response of monocytes to LPS and rapamycin
Project description:Inflammatory disorders including arthritis, inflammatory bowel disease, psoriasis and multiple sclerosis are characterised by the excessive production of pro-inflammatory cytokines resulting in inflammation, tissue damage and chronic pain. In a healthy immune system, the host has developed mechanisms to protect itself from excessive inflammation. One such mechanism is mediated by the anti-inflammatory cytokine IL-10, which primarily acts to limit the production of pro-inflammatory cytokines and antigen presenting capabilities of cells in the innate immune system. Since the discovery of IL-10, much emphasis has been placed on extrapolating its exact mechanism of inhibition with the aim of potentiating its use therapeutically. Significantly, the systemic administration of IL-10 has had success in many animal models of inflammation as well as clinical success in human disorders such as psoriasis and Crohn’s disease. Despite this, major gaps in our knowledge remain which have weakened the expected therapeutic effect for this anti-inflammatory cytokine. Our early studies discovered that in response to innate immune stimulation, IL-10 can potently inhibit miR-155 (McCoy et al., 2010), a miRNA characterised as a promoter of inflammation and found over-expressed in autoimmune pathologies. This finding suggests that the IL-10/miR-155 axis is a novel mechanism utilised by IL-10 to administer its function. In this study, an Affymetrix array was employed to characterise genes regulated by the IL-10/miR-155 axis in bone-marrow derived macrophages. This project proposal aims to characterise the mechanism of IL-10 inhibition on miR-155, as well as understand the functional outcome and significance of this effect by characterising genes regulated by the IL-10/miR-155 axis.
Project description:Defense against attaching and effacing (A/E) bacteria requires the sequential generation of IL-23 and IL-22 to induce protective mucosal responses. While the critical source of IL-22 has been identified as CD4+ and Nkp46+ innate lymphoid cells (ILCs), the precise source of IL-23 is unclear. Here, we use genetic techniques to deplete specific classical dendritic cell (cDC) subsets and analyze immunity to the A/E pathogen Citrobacter rodentium. We find that Zbtb46+ cDCs, and specifically Notch2-dependent intestinal CD11b+ cDCs, but not Batf3-dependent CD103+ cDCs, are required for IL-23 production and immunity against C. rodentium. Notch2 controls cDC differentiation at a terminal step mediated by lymphotoxin signaling. Importantly, these results provide the first demonstration of a non-redundant function of CD11b+ cDCs in vivo. Analysis of genes differentially expressed between WT, Batf3 KO and Notch2 KO colons following C. rodentium infection. Mice were infected with 2 x 10^9 C. rodentium and colons harvested at either Day 4 or Day 9.
Project description:The liver is the main gateway from the gut and the unidirectional sinusoidal flow from portal to central veins constitutes heterogenous zonation, such as peri-portal vein (PV) and peri-central vein (CV) zones; however, the functional and molecular differences among liver macrophages in these zones remain poorly understood. Here, intravital multiphoton imaging revealed significantly suppressed in PV zones. Zonation-specific single-cell transcriptome analyses detected an immuno-suppressive macrophage subset highly expressing IL-10 and Marco, a scavenger receptor, enriched in PV zones. Inhibited IL-10 signaling and Marco-deficient conditions impaired the suppressive function of these macrophages. The reduced number of Marco-positive suppressive macrophages in germ-free or antibiotic-treated conditions suggested that gut commensal bacteria were responsible for inducing this specific population. Dextran sulfate sodium-induced colitis led to inflammation in liver PV zones, which was more prominent under Marco-deficient conditions. Marco-positive inflammatory macrophages in the human liver are diminished in primary sclerosing cholangitis (PSC), an intractable disease characterized by chronic inflammation around the portal veins and bile ducts. Collectively, commensal bacteria and their pathogenic substances induce Marco-positive immunosuppressive macrophages, consequently limiting excessive inflammation in PV zones. Failure of this self-limiting system may cause hepatic inflammatory disorders, such as PSC.
Project description:The liver is the main gateway from the gut and the unidirectional sinusoidal flow from portal to central veins constitutes heterogenous zonation, such as peri-portal vein (PV) and peri-central vein (CV) zones; however, the functional and molecular differences among liver macrophages in these zones remain poorly understood. Here, intravital multiphoton imaging revealed significantly suppressed in PV zones. Zonation-specific single-cell transcriptome analyses detected an immuno-suppressive macrophage subset highly expressing IL-10 and Marco, a scavenger receptor, enriched in PV zones. Inhibited IL-10 signaling and Marco-deficient conditions impaired the suppressive function of these macrophages. The reduced number of Marco-positive suppressive macrophages in germ-free or antibiotic-treated conditions suggested that gut commensal bacteria were responsible for inducing this specific population. Dextran sulfate sodium-induced colitis led to inflammation in liver PV zones, which was more prominent under Marco-deficient conditions. Marco-positive inflammatory macrophages in the human liver are diminished in primary sclerosing cholangitis (PSC), an intractable disease characterized by chronic inflammation around the portal veins and bile ducts. Collectively, commensal bacteria and their pathogenic substances induce Marco-positive immunosuppressive macrophages, consequently limiting excessive inflammation in PV zones. Failure of this self-limiting system may cause hepatic inflammatory disorders, such as PSC.
Project description:Macrophage activation must be tightly controlled to prevent overzealous responses that cause self-damage. MicroRNAs have been shown to promote classical macrophage activation by blocking concomitant anti-inflammatory signals and transcription factors, but can also place restraints on activation by preventing excessive TLR-signalling. In contrast, the microRNA profile associated with alternatively activated macrophages and their role in regulating wound-healing or anti-helminthic responses has not yet been described. Utilizing an in vivo model of alternative activation, in which adult Brugia malayi nematodes are surgically implanted in the peritoneal cavity of mice, we examined the profile of microRNA expression in these alternatively activated macrophages and compared this to alternatively activated IL-4 receptor knockout macrophages and thioglycollate elicited macrophages. Peritoneal macrophages from BALB/c wild type or IL-4 receptor knockout mice were elicited with thioglycollate or using nemtodes (peritoneal implant of Brugia malayi). The latter leads to a population of alternatively activated macrophages. Microarray analysis was used to examine the microRNA profile of WT alternatively activated macrophages (n = 4), IL-4 receptor knockout alternatively activated macrophages (n = 4), WT thioglycollate elicited macrophages (n = 3) and IL-4 receptor knockout thioglycollate elicited macrophages (n = 3).
Project description:The proteasome is a central regulatory hub for intracellular signaling by degrading numerous signaling mediators. Immunoproteasomes are specialized types of proteasomes known to be involved in shaping adaptive immune responses, but their role for innate immune signaling is elusive. Here, we analyzed immunoproteasome function for polarization of alveolar macrophages which are highly specialized tissue macrophages of the alveolar surface of the lung. Classical activation (M1 polarization) of primary alveolar macrophages by LPS/IFNγ transcriptionally induced all three immunoproteasome subunits LMP2, LMP7, and MECL-1. In contrast, IL-4 triggered alternative (M2) activation was accompanied by posttranscriptional upregulation of LMP2 and LMP7. Accordingly, immunoproteasome activity increased in M1 cells, and to some extent under M2 conditions. Analyzing the polarization capability from LMP7 deficient mice revealed no effect on the LPS/IFNγ triggered M1 profile, but uncovered a distorted M2 profile for IL-4 stimulated LMP7-/- alveolar macrophages as characterized by increased M2 marker gene expression and CCL17 cytokine release. This shift in immunoproteasome-dependent M2 polarization was accompanied by amplified AKT/STAT6 activation and IRF4 expression in LMP7-/- alveolar macrophages. IL-13 stimulation of LMP7 deficient cells induced a similar M2 skewed profile and IL4Rα protein expression was generally elevated in LMP7-/- alveolar macrophages, indicating that amplified IL4R signaling in immunoproteasome defective cells may contribute to augmented M2 polarization. Importantly, treatment with an LMP7-specific proteasome inhibitor recapitulated the findings of genetic LMP7 inactivation. Our results thus suggest a novel role of immunoproteasome function for regulating innate immune function of macrophages by limiting IL4R expression and signaling. Expression data of M0 and M2 macrophages derived from Lmp7 k.o. and control animals