Project description:Previous research has reported that FDC-SP had similar molecular properties to statherin, a protein exists in saliva which plays important roles in preventing Ca precipitation. Further biomolecular study has suggested that the expression of FDC-SP may be associated with periodontal ligament (PDL) phenotype expression. Therefore, we hypothesized that FDC-SP may play specific roles in the inhibition of calcium precipitation during periodontal regeneration, as well as affect phenotype expression of periodontal ligament cells (PDLCs) during the differentiation process. To investigate this, we applied microarray technology to identify gene expression changes in hPDLCs transfected with FDC-SP and then clustered them according to their biological functions. We firstly established a recombinant lentiviral vector containing FDC-SP and obtained safe and efficient FDC-SP overexpression in human periodontal ligament cells (hPDLCs). After that, we applied Agilent Whole Human Genome Oligo Microarray (4M-CM-^W44K) to identify differentially expressed genes between empty vector-transfected hPDLCs and FDC-SP -transfected ones and then clustered them according to their biological functions. 3 independent experiments were performed and the empty vector-transfected hPDLCs were used as control.
Project description:Previous research has reported that FDC-SP had similar molecular properties to statherin, a protein exists in saliva which plays important roles in preventing Ca precipitation. Further biomolecular study has suggested that the expression of FDC-SP may be associated with periodontal ligament (PDL) phenotype expression. Therefore, we hypothesized that FDC-SP may play specific roles in the inhibition of calcium precipitation during periodontal regeneration, as well as affect phenotype expression of periodontal ligament cells (PDLCs) during the differentiation process. To investigate this, we applied microarray technology to identify gene expression changes in hPDLCs transfected with FDC-SP and then clustered them according to their biological functions.
Project description:Irisin is recognized as a myokine produced by muscles, regulating metabolism and energy homeostasis, however, it may play a role in many other biological functions. Little is known about its effect on periodontal ligament cells. We employed Affymetrix to profile mRNA expression patterns between 3D human periodontal ligament cell spheroids treated with and without irisin. The mRNA expression profiling identified approximately 1000 mRNAs to be differentially expressed between the two groups, which suggests that irisin is involved in gene regulation in human periodontal ligament cells.
Project description:In this study, the effect of a storage medium (hK-HTCM) in which hair keratin was dissolved in a 1:1 mixed solution of Histidine-Tryptophan-Ketoglutarate and Culture media solution (HTCM) was evaluated on the viability and proliferation of human periodontal ligament cells. There was no difference in cytotoxicity between 0.1% and 0.25% hK-HTCM against 0% hK-HTCM and human periodontal ligament cells. Human periodontal ligament cells were cultured in 0.1% and 0.25% hK-HTCM for 48 hours, and after removing hair keratin from the culture medium, the cells resumed proliferation. When exposed to 0.25% hK-HTCM, human periodontal ligament cells showed differential expression of genes related to cell cycle and cell division regulation. On the other hand, differential expression of genes related to phosphorylation and ubiquitination related to cell cycle resumption was observed in human periodontal ligament cells after removal of 0.25% hK-HTCM. 0.25% hK-HTCM showed the ability to regulate the cell cycle of human periodontal ligament cells without showing cytotoxicity, and its potential to be used as a long-term storage medium for avulsed teeth was confirmed.
Project description:We used microarrays to detect the differences in gene-expression of the periontal ligament between patients with healthy periodontal ligament and patients with periodontitis RNA was extracted directly from the middle third of the human periodontal ligament