Project description:Lhx5 mutant mouse embryos show loss of a neuronal nucleus of the brain called the mamillary body and essential for the formation of memories. We wanted to identify the genes that are responsible for the normal development of the mammillary body. Therefore, we used microarray experiments to identify the genes that show a changed expression in the Lhx5 mutant mammillary neuroepithelium in comparison to the wild type.
Project description:Lhx5 mutant mouse embryos show loss of a neuronal nucleus of the brain, called the mammillary body and essential for memory. We found out that this is caused by a loss of appropriate specification of mammillary neurons and we identified in a microarray study downstream targets responsible for the observed phenotype. Here we wanted to find out which of our identified targets are under direct control of Lhx5.
Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other