Project description:During seed maturation, the embryo accumulates nutrition storage compounds such as oil and reservve proteins, and acquires dormancy and desiccation tolerance. Arabidopsis transcription factors LEC1, LEC2, FUS3 and ABI3 are known as the master regulators of seed maturation because all these events during the seed maturation are severely affected by the respective mutants. In addition, the lec1, lec2 and fus3 mutants exhibit some heterochronic characteristics, as exemplified by the development of true leaf-like cotyledons during embryogenesis. To characterize these mutants at the whole genome expression level, microarray experiments were performed.
Project description:During seed maturation, the embryo accumulates nutrition storage compounds such as oil and reservve proteins, and acquires dormancy and desiccation tolerance. Arabidopsis transcription factors LEC1, LEC2, FUS3 and ABI3 are known as the master regulators of seed maturation because all these events during the seed maturation are severely affected by the respective mutants. In addition, the lec1, lec2 and fus3 mutants exhibit some heterochronic characteristics, as exemplified by the development of true leaf-like cotyledons during embryogenesis. To characterize these mutants at the whole genome expression level, microarray experiments were performed.
Project description:During seed maturation, the embryo accumulates nutrition storage compounds such as oil and reserve proteins, and acquires dormancy and desiccation tolerance. Arabidopsis transcription factors LEC1, LEC2, FUS3 and ABI3 are known as the master regulators of seed maturation because all these events during the seed maturation are severely affected by the respective mutants. In addition, the lec1, lec2 and fus3 mutants exhibit some heterochronic characteristics, as exemplified by the development of true leaf-like cotyledons during embryogenesis. To characterize these mutants at the whole genome expression level, microarray experiments were performed. Developing seeds were dissected from the siliques of the lec1-1, lec2-1, or fus3-3 homozygous plants or the respective wild type plants (Col-0 for fus3-3, WS for lec1-1 and lec2-1) at 8 and 12 days after flowering. Seeds samples were obtained from triplicate batches of plants and used for RNA preparation.
Project description:During seed maturation, the embryo accumulates nutrition storage compounds such as oil and reserve proteins, and acquires dormancy and desiccation tolerance. Arabidopsis transcription factors LEC1, LEC2, FUS3 and ABI3 are known as the master regulators of seed maturation because all these events during the seed maturation are severely affected by the respective mutants. In addition, the lec1, lec2 and fus3 mutants exhibit some heterochronic characteristics, as exemplified by the development of true leaf-like cotyledons during embryogenesis. To characterize these mutants at the whole genome expression level, microarray experiments were performed. Developing seeds were dissected from the siliques of the abi3-6 homozygous plants or the respective wild type plants (Col-0) at 12 and 16 days after flowering. Seeds samples were obtained from triplicate batches of plants and used for RNA preparation.
Project description:Desiccation tolerance (DT) allowed seed plants to conquer ecosystems with long periods of limited water availability. This adaptive features allows seeds to remain dried for very long times without losing their ability to germinate. There is little information about all the signaling components required to achieve DT and on how transcription factors (TFs) modulate global DT processes. We performed RNA-seq experiment and carbohydrates profiles of lec1, lec2, fus3 and abi3, as well as their corresponding wild types, at three stages of seed development 15, 17 and 21 DAF (day after open flower) belonging to the seed desiccation period. A complex experimental design approach and regulatory networks prediction were used to identify differentially expressed genes specifically involved in DT process. In order to identify mechanisms involved in the acquisition of DT during seed development, we designed a comparative transcriptomic analysis between the seed desiccation intolerant (DI) mutants lec1-1, abi3-5 and fus3-3, the desiccation tolerant mutant lec2-1 and the desiccation tolerant weak allele of abi3 (abi3-1) with their respective wild type controls. This analysis should allow to identify genes that are differentially expressed in the desiccation intolerant mutants respect to tolerant mutants and WT controls.
Project description:Repression of embryonic traits during the seed-to-seedling phase transition requires the inactivation of master transcription factors associated with embryogenesis. How the timing of such inactivation is controlled is unclear. Here, we report on a novel transcriptional co-repressor, Arabidopsis thaliana SDR4L, that forms a feedback inhibition loop with the master transcription factors LEC1 and ABI3 to repress post-germinative embryonic traits. LEC1 and ABI3 regulate their own expression by inducing AtSDR4L during mid- to late embryogenesis. AtSDR4L directly binds to the promoter of LEC1. Atsdr4l mutant seedlings phenocopy the LEC1 overexpressors, and their embryonic traits could be partially rescued by impairing LEC1 or ABI3. The penetrance and expressivity of the Atsdr4l phenotypes depend on both developmental and external cues, demonstrating the broad regulatory potential offered by AtSDR4L during the seed-to-seedling phase transition.