Project description:<p>Pediatric Ewing sarcoma is a pediatric cancer that primarily arises from the bone. It is characterized by chimeric fusions of the EWS gene and an ETS family transcription factor. In this study, we performed massively parallel sequencing of a larger collection of Ewing sarcoma tumors to define the genomic landscape of this disease. We found that these tumors are among of the most genetically normal cancers currently characterized. There was also a marked absence of recurrent mutations in immediately targetable signaling transduction pathway genes. In this study we answer outstanding questions about ETS transcription factor expression, effects of treatment on mutational burden in Ewing sarcoma tumors, and describe patterns of tumor evolution. We also found that loss-of-function mutations in STAG2 were present in approximately 15% of Ewing sarcoma tumors and loss of STAG2 expression was associated with disease metastasis in this patient cohort.</p>
Project description:Ewing sarcoma is an aggressive malignancy characterized by oncogenic rearrangements of the EWS gene with an ETS-family transcription factor, most commonly FLI. Recent comprehensive next-generation sequencing efforts have revealed few other highly recurrent mutations in this disease apart from loss-of-function mutations in STAG2 which occur in 15-20% of tumors. STAG2 is a member of the cohesin complex, which regulates sister chromatid alignment during mitosis and epigenetic regulation of gene expression. While some studies suggest that loss of STAG2 is associated with the development of aneuploidy, this is not the case in Ewing sarcoma. To investigate whether STAG2 loss affects epigenetic regulation of gene expression in Ewing sarcoma, we developed isogenic Ewing sarcoma cell lines with STAG2 knockout. We found that Ewing sarcoma cells engineered for loss of STAG2 maintain an intact cohesion complex that alternately incorporates STAG1.
Project description:This SuperSeries is composed of the following subset Series: GSE36857: Goldengate Methylation analysis: Ewing Sarcoma GSE36858: 5- AZA treatment of EWS cell lines Refer to individual Series
Project description:We show that EWS-FLI1, an aberrant transcription factor responsible for the pathogenesis of Ewing sarcoma, reprograms gene regulatory circuits by directly inducing or directly repressing enhancers. At GGAA repeats, which lack regulatory potential in other cell types and are not evolutionarily conserved, EWS- FLI1 multimers potently induce chromatin opening, recruit p300 and WDR5, and create de novo enhancers. GGAA repeat enhancers can loop to physically interact with target promoters, as demonstrated by chromosome conformation capture assays. Conversely, EWS-FLI1 inactivates conserved enhancers containing canonical ETS motifs by displacing wild-type ETS transcription factors and abrogating p300 recruitment. ChIP-seq for of 4 histone modifications (H3K27ac, H3K4me1, H3K4me3 and H3K27me3), FLI1, p300, WDR5, ELF1 and GABPA in primary Ewing sarcomas, Ewing sarcoma cell lines (A673 and SKMNC cells), and mesenchymal stem cells (MSC). EWS-FLI1 was knocked down in Ewing sarcoma cell lines with lentiviral shRNAs (shFLI1 and shGFP control). EWS-FLI1 was expressed in MSCs with lentiviral expression vectors (pLIV EWSFLI1 or pLIV empty vector control). * Raw data not provided for the MSC and Primary Ewing sarcoma samples. *
Project description:Ewing sarcoma is an aggressive pediatric small round cell tumor that predominantly occurs in bone. Approximately 85% of Ewing sarcomas harbor the EWS/FLI fusion protein, which arises from a chromosomal translocation, t(11:22)(q24:q12). EWS/FLI interacts with numerous lineage-essential transcription factors to maintain mesenchymal progenitors in an undifferentiated state. We previously showed that EWS/FLI binds the osteogenic transcription factor RUNX2 and prevents osteoblast differentiation. In this study, we investigated the role of another Runt-domain protein, RUNX3, in Ewing sarcoma. RUNX3 participates in mesenchymal-derived bone formation and is a context dependent tumor suppressor and oncogene. RUNX3 was detected in all Ewing sarcoma cells examined, whereas RUNX2 was detected in only 73% of specimens. Like RUNX2, RUNX3 binds to EWS/FLI via its Runt domain. EWS/FLI prevented RUNX3 from activating the transcription of a RUNX-responsive reporter, p6OSE2. Stable suppression of RUNX3 expression in the Ewing sarcoma cell line A673 delayed colony growth in anchorage independent soft agar assays and reversed expression of EWS/FLI-responsive genes. These results demonstrate an important role for RUNX3 in Ewing sarcoma. RNA-seq to compare transcriptiome of control A673 ewing sarcoma cells stably expression a non-target or RUNX3 shRNA
Project description:Ewing sarcoma is an aggressive malignancy characterized by oncogenic rearrangements of the EWS gene with an ETS-family transcription factor, most commonly FLI. Recent comprehensive next-generation sequencing efforts have revealed few other highly recurrent mutations in this disease apart from loss-of-function mutations in STAG2 which occur in 15-20% of tumors. STAG2 is a member of the cohesin complex, which regulates sister chromatid alignment during mitosis and epigenetic regulation of gene expression. While some studies suggest that loss of STAG2 is associated with the development of aneuploidy, this is not the case in Ewing sarcoma. To investigate whether STAG2 loss effects epigenetic regulation of gene expression in Ewing sarcoma, we developed isogenic Ewing sarcoma cell lines with STAG2 knockout. We found that Ewing sarcoma cells engineered for loss of STAG2 maintain an intact cohesion complex that alternately incorporates STAG1.
Project description:Ewing sarcoma is an aggressive malignancy characterized by oncogenic rearrangements of the EWS gene with an ETS-family transcription factor, most commonly FLI. Recent comprehensive next-generation sequencing efforts have revealed few other highly recurrent mutations in this disease apart from loss-of-function mutations in STAG2 which occur in 15-20% of tumors. STAG2 is a member of the cohesin complex, which regulates sister chromatid alignment during mitosis and epigenetic regulation of gene expression. While some studies suggest that loss of STAG2 is associated with the development of aneuploidy, this is not the case in Ewing sarcoma. To investigate whether STAG2 loss effects epigenetic regulation of gene expression in Ewing sarcoma, we developed isogenic Ewing sarcoma cell lines with STAG2 knockout. We found that Ewing sarcoma cells engineered for loss of STAG2 maintain an intact cohesion complex that alternately incorporates STAG1.
Project description:We identified global DNA binding properties of EWS-FLI1 in mouse Ewing sarcoma. GGAA microsatellites were found as binding sites of EWS-FLI1 but with less frequency than that in human Ewing sarcoma, and genomic distribution is not conserved between human and mouse.