Project description:Granulosa cells originating from three different phases of antral follicle growth were compared: growing (G), plateau (P) and atresia (A), as categorized by flow cytometry profiles of DNA. The growing and atretic conditions were each hybridized against the plateau condition as a reference in order to understand the specific biological mechanisms modulated in this class of follicles. Three-condition experiment, Plateau, Growing vs Atretic granulosa cells. Biological replicates: 4 . Dye-swap experiment.
Project description:Granulosa cells originating from two different phases of antral follicle growth (plateau and atretic) were compared in follicles with a diameter of 9mm or more. The plateau follicle is the reference. Two conditions experiment (Plateau and Atretic); Four biological replicates for each group; Two technical replicates per samples (dye-swap).
Project description:Granulosa cells originating from two different phases of antral follicle growth (plateau and atretic) were compared in follicles with a diameter of 9mm or more. The plateau follicle is the reference.
Project description:Granulosa cells originating from three different phases of antral follicle growth were compared: growing (G), plateau (P) and atresia (A), as categorized by flow cytometry profiles of DNA. The growing and atretic conditions were each hybridized against the plateau condition as a reference in order to understand the specific biological mechanisms modulated in this class of follicles.
Project description:Coordinated interactions between ovarian granulosa and theca cells are required for female endocrine function and fertility. To elucidate these interactions the regulation of the granulosa and theca cell transcriptomes during bovine antral follicle development were investigated. Granulosa cells and theca cells were isolated from small (<5 mm), medium (5-10 mm), and large (>10 mm) antral bovine follicles. A microarray analysis of 24,000 bovine genes revealed that granulosa cells and theca cells each had gene sets specific to small, medium and large follicle cells. Transcripts regulated (i.e., minimally changed 1.5-fold) during antral follicle development for the granulosa cells involved 446 genes and for theca cells 248 genes. Only 28 regulated genes were common to both granulosa and theca cells. Regulated genes were functionally categorized with a focus on growth factors and cytokines expressed and regulated by the two cell types. Candidate regulatory growth factor proteins mediating both paracrine and autocrine cell-cell interactions include macrophage inflammatory protein (MIP1 beta), teratocarcinoma-derived growth factor 1 (TDGF1), stromal derived growth factor 1 (SDF1; i.e., CXCL12), growth differentiation factor 8 (GDF8), glia maturation factor gamma (GMFG), osteopontin (SPP1), angiopoietin 4 (ANGPT4), and chemokine ligands (CCL 2, 3, 5, and 8). The current study examined granulosa cell and theca cell regulated genes associated with bovine antral follicle development and identified candidate growth factors potentially involved in the regulation of cell-cell interactions required for ovarian function. Experiment Overall Design: Granulosacell RNA samples from three groups of follicles different in size - small, medium, and large (pooled untreated ovaries) are compared between each other. Each group has 2 separate biological replicas; each replica contained pooled RNA from 20-40 ovaries from 6-10 different animals.