Project description:The development of triple-negative breast cancers (TNBCs) – a subset of tumors with particularly aggressive pathogenesis – is critically regulated by certain tumor-microenvironment-associated cells called mesenchymal stem/stromal cells (MSCs), which we and others have shown promote TNBC progression by activating a multitude of signaling nodes that propagate malignant traits in neighboring cancer cells. Characterization of these signaling cascades will better our understanding of TNBC biology, and stands to bring about novel therapeutics that can eliminate the morbidity and mortality associated with advanced disease. Here, we particularly focused on an emerging family of non-coding RNAs – called long non-coding RNAs or lncRNAs – and utilized a MSC-supported TNBC progression model to identify specific lncRNAs of functional relevance to TNBC pathogenesis. We used Affymetrix arrays to identify the gene expression changes that breast cancer cells (in this case, MDA-MB-231 cells) exhibit as they interact with admixed human MSCs
Project description:Triple negative breast cancer is a heterogeneous disease with distinct molecular subtypes that differentially respond to chemotherapy and targeted agents. The purpose of this study was to explore the clinical relevance of Lehmann triple negative breast cancer subtypes by identifying any differences in response to neoadjuvant chemotherapy among them.
Project description:Breast cancer is one of the most common cancers in women. Of the different subtypes of breast cancer, the triple negative breast cancer subtype of breast cancer is the most aggressive. A proteomic screen of nucleolar content across breast cancer subtypes found that triple negative breast cancer cell lines have a distinct nucleolar proteome signature in comparison to non-TNBC breast cancer cell lines.
Project description:To investigate the progesterone responsive long non-coding RNAs in human breast cancer cells. Cells were treated with 10nM of progesterone for 6 hours and cells were collected in Trizol for total RNA extraction. Total RNA sequencing was performed. Differential expression analysis was performed to identify differential expression of long non-coding RNAs.