Project description:Atlantic mackerel (Scomber scombrus) occurs on both sides of the north Atlantic and has traditionally been grouped into 5 spawning components, some of which were thought to be isolated natal homing stocks. Previous studies have provided no evidence for cross Atlantic migration and no or weak support for isolated spawning components within either side of the North Atlantic. We question the de-facto accepted hypothesis of isolation between spawning components on the basis of spawning and age distribution data. The spawning intensities, proxied by larval abundances, are negatively correlated between the North Sea and Celtic Sea, which indicates that the two spawning components may be connected by straying individuals. This finding is based on unique larvae samples collected before the collapse of North Sea component, thus showing that the exchange is not a recent phenomenon due to the collapse. The analyses of old as well as more recent age distributions show that strong year classes spread into other areas where they spawn as adults ("twinning"). Our findings are in accordance with the lack of solid evidence for stock separation from previous analyses of tagging data, genetics, ectoparasite infections, otolith shapes, and blood phenotypes. Because no method has been able to identify the origin of spawning mackerel unequivocally from any of the traditional spawning components, and in the light of our results, we conclude that straying outweighs spatial segregation. We propose a new model where the population structure of mackerel is described as a dynamic cline, rather than as connected contingents. Temporal changes in hydrography and mackerel behavior may affect the steepness of the cline at various locations. The new interpretation of the population structure of Atlantic mackerel has important implications for research, assessment and management.
Project description:Wild capture can be stressful for fish. Stress has the potential to induce mortality in released unwanted catches or negative flesh quality consequences in retained ones. Such effects compromise sustainable natural resource management and industry profitability. Mitigating stress during capture is therefore desirable. Biological indicators of stress can objectively inform fishers as to the functional welfare status of catches during fishing operations. If they are to be of practical use in mitigating stress during wild capture events, such indicators must be quantifiable, respond rapidly, reflect the level of induced stress and be easily observable. Atlantic mackerel (Scomber scombrus) are extensively targeted by purse seine fisheries in European waters but are particularly vulnerable to stress. Excessive crowding in the net is thought to be the principal stress mechanism. There is therefore a need to develop indicators of crowding stress for this species so that catch welfare can be improved. Here, we demonstrate that S. scombrus exhibit a skin colour change from predominately green to predominately blue when exposed to crowding stress. In sea cage trials, we induced various degrees of stress in groups of wild-caught S. scombrus by manipulating crowding density and its duration. Skin colour was quantified in air using digital photography. The colour change occurred rapidly (within the typical duration of crowding events in the fishery), and its magnitude was correlated to the severity and duration of crowding. Bluer fish were also associated with higher levels of plasma lactate. No appreciable colour change was observed in uncrowded (control) groups during the treatment period. Nonetheless, unstressed S. scombrus did turn blue <1 h after death. Together, these results indicate that skin colour change has the potential to be a useful real-time indicator of crowding stress for S. scombrus and could therefore be used to improve welfare during wild capture fishing.