Project description:Experiments were achieved on Arabidopsis thaliana. Transcriptional profiling of roots and shoots from plants treated with lead were compared to plants treated in similar conditions without lead. Four weeks old A. thaliana seedlings were treated in hydroponic cultures with Pb during 3 days, by adding or not 40 M-BM-5M Pb(NO3)2. Two-condition experiment, lead treated vs. untreated. Biological replicates: 3
Project description:Experiments were achieved on Hirschfeldia incana, a Brassicaceae collected from metalliferous mine spoils as a Pb accumulator plant. Transcriptional profiling of roots and shoots from plants treated with lead were compared to plants treated in similar conditions without lead. Four weeks old H. incana seedlings were treated in hydroponic cultures with Pb during 3 days, by adding or not 100 M-BM-5M Pb(NO3)2. Two-condition experiment, lead treated vs. untreated. Biological replicates: 3
Project description:Experiments were achieved on Arabidopsis thaliana. Transcriptional profiling of roots and shoots from plants treated with lead were compared to plants treated in similar conditions without lead. Four weeks old A. thaliana seedlings were treated in hydroponic cultures with Pb during 3 days, by adding or not 40 µM Pb(NO3)2.
Project description:We sequenced mRNA from 9 liver samples of juvenile largemouth bass (Micropterus salmoides) taken from different lead concentration exposure treatment fish and control fish to investigate the transcriptome and comparative expression profiles of largemouth bass liver undergoing lead exposure.
Project description:Experiments were achieved on Hirschfeldia incana, a Brassicaceae collected from metalliferous mine spoils as a Pb accumulator plant. Transcriptional profiling of roots and shoots from plants treated with lead were compared to plants treated in similar conditions without lead. Four weeks old H. incana seedlings were treated in hydroponic cultures with Pb during 3 days, by adding or not 100 µM Pb(NO3)2.
Project description:In this study we analyzed the effects of lead-exposure up hippocampal gene expression in males and females exposed to 0ppm, 250ppm and 750ppm lead during two different developmental periods, perinatal (in utero through to weaning at PND21) and postnatal (PND0-PND45). All tissue was taken at PND 55. We used affymetrix Rat Gene 1.0ST arrays to obtain global gene expression data from each animal, with a group size of 4 for all conditions (Total number of Arrays = 40) Gene expression was profiled in hippocampus at no lead exposure (0ppm), 250ppm and 750 ppm lead exposure level at peinatal and postnaltal developmental period.
Project description:Hirschfeldia incana, a pseudometallophyte belonging to the Brassicaceae family and widespread in the Mediterranean region, was selected for its ability to grow on soils contaminated by lead (Pb). The global comparison of gene expression using microarrays between a plant susceptible to Pb (Arabidopsis thaliana) and a Pb tolerant plant (H. incana) enabled the identification of a set of specific genes expressed in response to lead exposure. Three groups of genes were particularly over-represented by the Pb exposure in the biological processes categorized as photosynthesis, cell wall, and metal handling. Each of these gene groups was shown to be directly involved in tolerance or in protection mechanisms to the phytotoxicity associated with Pb. Among these genes, we demonstrated that MT2b, a metallothionein gene, was involved in lead accumulation, confirming the important role of metallothioneins in the accumulation and the distribution of Pb in leaves. On the other hand, several genes involved in biosynthesis of ABA were shown to be up-regulated in the roots and shoots of H. incana treated with Pb, suggesting that ABA-mediated signaling is a possible mechanism in response to Pb treatment in H. incana. This latest finding is an important research direction for future studies.
Project description:The purpose of this study was to clarify the possible mechanism of common carp brain injury after exposure to lead through transcriptome analysis. Transcriptome analysis showed that 2141 differentially expressed genes were identified. Among these, 502 genes were up-regulated and 1639 genes were down-regulated. Meanwhile, GO enrichment analysis showed Transport, biological_process, DNA-templated (regulation of transcription) and signal transduction contained the most differential genes in the biological process. Furthermore, KEGG pathway enrichment analysis showed Ion channels, GnRH signaling pathway, cell adhesion molecules, Wnt signaling pathway, and calcium signaling pathway were significantly enriched. In addition, 10 differentially expressed genes were selected for qRT-PCR detection, and the results demonstrated that the selected genes exhibited the same trends with the RNA-Seq results, which indicates the transcriptome sequencing data is reliable. In conclusion, the above results provide a theoretical basis for clarifying the relationship between lead exposure and brain injury in common carp and for further studying of the genes related to lead poisoning.
Project description:In this study we analyzed the effects of lead-exposure up hippocampal gene expression in males and females exposed to 0ppm, 250ppm and 750ppm lead during two different developmental periods, perinatal (in utero through to weaning at PND21) and postnatal (PND0-PND45), across three strains (Fischer, Long Evans and Sprague Dawley). All tissue was taken at PND 55. We used affymetrix Rat Gene 1.0ST arrays to obtain global gene expression data from each animal, with a group size of 4 for all conditions (Total number of Arrays = 119) Gene expression was profiled in the hippocampus of rats at no lead exposure (0ppm), 250ppm and 750 ppm lead exposure levels during perinatal and postnatal developmental periods of both males and females of three strains of rat (Fischer, Long Evans and Sprague Dawley).
Project description:In this study we analyzed the effects of lead-exposure up hippocampal gene expression in males and females exposed to 0ppm, 250ppm and 750ppm lead during two different developmental periods, perinatal (in utero through to weaning at PND21) and postnatal (PND0-PND45). All tissue was taken at PND 55. We used affymetrix Rat Gene 1.0ST arrays to obtain global gene expression data from each animal, with a group size of 4 for all conditions (Total number of Arrays = 40)