Project description:This study investigated the transcriptomic response of rice pathogen Acidovorax avenae subsp. avenae (Aaa) strain RS-1 to ß-lactam antibiotics in particular Ampicillin (Amp) and the result highlights the importance of Amp-induced differentially expressed genes in the virulence of Aaa strain RS-1.
Project description:Determining how a bacterial pathogen responds to its host and other bacterial species by altering gene expression is key to understand its pathogenesis and environmental adaption. Here, we used RNA-Seq to comprehensively and quantitatively assess the transcriptional response of the rice bacterial pathogen Acidovorax avenae subsp. avenae strain RS-1 cultivated in vitro, in vivo and in co-culture with rice rhizobacterium Burkholderia seminalis R456. Results revealed a surprisingly large number of regulatory differences between these conditions indicating adaptation of A. avenae subsp. avenae to specific ecological conditions. In particular, a number of potential virulence factors such as type 3 secretion system proteins were specifically expressed under in vivo conditions, whereas genes whose protein products are involved in inter-bacterial interaction such as auxin efflux carrier, small mechanosensitive ion channel protein, and ureidoglycolate hydrolase were among those specifically up-regulated under co-culture conditions. In addition, global genomic analysis of strain RS-1 identified 406 putative non-coding (nc) RNA genes. Interestingly, 8 ncRNA genes that were uniquely expressed under in vivo may be linked to pathogenicity while 4 ncRNA genes that were uniquely expressed under coculture conditions may be involved in adaption to co-cultivation with B. seminalis. Expression data obtained by RNA-Seq were also confirmed for selected genes by quantitative real-time PCR and two-dimensional gel electrophoresis as well as knockout analysis.
Project description:Determining how a bacterial pathogen responds to its host and other bacterial species by altering gene expression is key to understand its pathogenesis and environmental adaption. Here, we used RNA-Seq to comprehensively and quantitatively assess the transcriptional response of the rice bacterial pathogen Acidovorax avenae subsp. avenae strain RS-1 cultivated in vitro, in vivo and in co-culture with rice rhizobacterium Burkholderia seminalis R456. Results revealed a surprisingly large number of regulatory differences between these conditions indicating adaptation of A. avenae subsp. avenae to specific ecological conditions. In particular, a number of potential virulence factors such as type 3 secretion system proteins were specifically expressed under in vivo conditions, whereas genes whose protein products are involved in inter-bacterial interaction such as auxin efflux carrier, small mechanosensitive ion channel protein, and ureidoglycolate hydrolase were among those specifically up-regulated under co-culture conditions. In addition, global genomic analysis of strain RS-1 identified 406 putative non-coding (nc) RNA genes. Interestingly, 8 ncRNA genes that were uniquely expressed under in vivo may be linked to pathogenicity while 4 ncRNA genes that were uniquely expressed under coculture conditions may be involved in adaption to co-cultivation with B. seminalis. Expression data obtained by RNA-Seq were also confirmed for selected genes by quantitative real-time PCR and two-dimensional gel electrophoresis as well as knockout analysis. Aaa strain RS-1 and B. seminalis strain R456 was isolated from diseased rice plants (Li et al., 2011; Xie et al., 2011) and rice rhizosphere (Zhang et al., 2007; Li et al., 2011), respectively, in our previous studies, and were stored in 20-30% sterile glycerol at -80°C. The samples of Aaa strain RS-1 for in vitro and in vivo analysis were prepared as described before (Ibrahim et al., 2012). The co-culture analysis of Aaa strain RS-1 with B. seminalis strain R456 were conducted according to Ruiz et al. (2009) and Di Cagno et al. (2009). Briefly, Aaa strain RS-1 and B. seminalis strain R456 was inoculated and incubated in chambers of a double culture vessel apparatus separated by a 0.4-μm membrane filter (Millipore Isopore™). In order to avoid the possible contamination during in vivo and co-culture operation, all bacterial samples were further confirmed based on the sequence analysis of 16S-rRNA (Li et al., 2011). Then samples were processed for RNA harvesting, mRNA purification and cDNA synthesis.
Project description:Transcriptome analysis of rice pathogen Acidovorax avenae subsp. avenae cultivated in vitro, in vivo and in co-culture with the rice rhizobacterium Burkholderia seminalis
Project description:Sugarcane is an important tropical crop mainly cultivated to produce ethanol and sugar. Crop productivity is negatively affected by Acidovorax avenae subsp avenae (Aaa), which causes the red stripe disease. Little is known about the molecular mechanisms triggered in response to the infection. We have investigated the molecular mechanism activated in sugarcane using a RNA-seq approach. We have produced a de novo transcriptome assembly (TR7) from sugarcane RNA-seq libraries submitted to drought and infection with Aaa. Together, these libraries present 247 million of raw reads and resulted in 168,767 reference transcripts. Mapping in TR7 of reads obtained from infected libraries, revealed 798 differentially expressed transcripts, of which 723 were annotated, corresponding to 467 genes. GO and KEGG enrichment analysis showed that several metabolic pathways, such as code for proteins response to stress, metabolism of carbohydrates, processes of transcription and translation of proteins, amino acid metabolism and biosynthesis of secondary metabolites were significantly regulated in sugarcane. Differential analysis revealed that genes in the biosynthetic pathways of ET and JA PRRs, oxidative burst genes, NBS-LRR genes, cell wall fortification genes, SAR induced genes and pathogenesis-related genes (PR) were upregulated. In addition, 20 genes were validated by RT-qPCR. Together, these data contribute to a better understanding of the molecular mechanisms triggered by the Aaa in sugarcane and opens the opportunity for the development of molecular markers associated with disease tolerance in breeding programs.