Project description:BACKGROUND: Rapidly growing mycobacteria is recognized as one of the causative agents of catheter-related infections, especially in immunocompromised hosts. To date, however, Mycobacterium senegalense, which was known as the principal pathogen of bovine farcy, has not been reported in human infection. CASE PRESENTATION: We describe the first case of human infection by M. senegalense, which has caused catheter-related bloodstream infection in a cancer patient in Korea. The microorganism was identified by the 16S rRNA gene, rpoB, and 16S-23S rRNA gene internal transcribed spacer (ITS) sequence analyses. CONCLUSION: Our first report of catheter-associated bacteremia caused by M. senegalense suggests the zoonotic nature of this species and indicates the expansion of mycobacterial species relating to human infection. M. senegalense should be considered as one of the causes of human infections in the clinical practice.
Project description:BackgroundMycobacterium senegalense is a non-tuberculous mycobacterium and is found everywhere in the environment. However, M. senegalense infection in human is extremely rare, especially in immunocompetent individuals. It is difficult to detect M. senegalense infection because its symptoms are non-specific, and routine diagnostic tests are less sensitive. It is also resistant to commonly used antibiotics. Here, we report the first case of M. senegalense infection after laparoscopic cholecystectomy in China.Case presentationA 55-year-old man was admitted because of repeated infections at multiple incision sites for more than 1 year. Although routine diagnostic test results were negative, metagenomic next-generation sequencing (mNGS) identified DNA sequences of M. senegalense in tissue samples from incision sites. The presence of M. senegalense was further confirmed by polymerase chain reaction and capillary electrophoresis. After 60 days of quadruple therapy with clarithromycin, moxifloxacin, rifampicin, and oxycycline, the patient's wound healed.ConclusionWe believe the case findings contribute to the limited amount of knowledge about M. senegalense infection and raises awareness that this infection can result in poor wound healing, even in an immunocompetent host. Owing to a lack of early, precise diagnosis, it is difficult to treat M. senegalense infections. Based on our findings, mNGS is a sensitive diagnostic test for M. senegalense infections.
Project description:16S ribosomal DNA (rDNA) and 16S-23S internal transcribed spacer rDNA sequence analyses were performed on Mycobacterium farcinogenes and M. senegalense strains and 26 strains of other rapidly growing mycobacteria to investigate the phylogenetic structure of bovine farcy mycobacteria within the M. fortuitum complex. M. farcinogenes and M. senegalense were indistinguishable in their 5"-end 16S rDNA but showed both considerable interspecies spacer sequence divergence and a high level of intraspecies sequence stability. A rapid detection assay using PCR and hybridization with species-specific probes was developed. The assay was specific among 46 species other than M. farcinogenes and M. senegalense and correctly identified all M. farcinogenes and M. senegalense strains. PCR- and 16S-23S rDNA sequence-based detection will be a valuable approach for diagnosis of the causal agents of African bovine farcy in cattle.
Project description:Mycobacterium peregrinum consists of two taxa: types I and II. We evaluated 43 clinical type II strains from throughout the United States. They were responsible for soft-tissue and bone infections, catheter-related infections, and possible pneumonitis. By carbohydrate utilization, they were indistinguishable from type I strains, being D-mannitol and trehalose positive. However, they had a distinct susceptibility pattern that included intermediate ciprofloxacin MICs but low clarithromycin and doxycycline MICs of < or =1 microg/ml. These features were also shared by reference isolates of Mycobacterium senegalense from African bovine cases of "farcy." By 16S rRNA gene sequencing, the type II isolates shared 100% sequence identity with M. senegalense. Partial sequencing of the type II hsp65 gene (441 bp) revealed four sequevars showing > or =98.4% identity with each other and > or =98.6% identity with the sequence of five bovine strains of M. senegalense. There was < or =97.1% identity with M. peregrinum type I isolates and other Mycobacterium fortuitum group species. Sequencing of additional gene targets including the 16S-23S rDNA internal transcribed spacer region and the rpoB gene (partial sequence) revealed a similar phylogenetic grouping. DNA-DNA hybridization showed 76 to 99% relatedness between the bovine and human strains. These studies demonstrate that type II isolates are not isolates of M. peregrinum but represent human strains of M. senegalense. This study is the first to demonstrate this species as a human pathogen. Representative human M. senegalense strains include ATCC 35755 and newly submitted strains ATCC BAA-849, ATCC BAA-850, and ATCC BAA-851.