Project description:BACKGROUND:Chlamydia psittaci is an intracellular bacterium primarily causing respiratory diseases in birds but may also be transmitted to other animals, including humans. The prevalence of the pathogen in wild birds in Sweden is largely unknown. METHODS:DNA was extracted from cloacae swabs and screened for C. psittaci by using a 23S rRNA gene PCR assay. Partial 16S rRNA and ompA gene fragments were sequence determined and phylogenies were analysed by the neighbour-joining method. RESULTS AND CONCLUSION:The C. psittaci prevalence was 1.3% in 319 Peregrine Falcons and White-tailed Sea Eagles, vulnerable top-predators in Sweden. 16S rRNA and ompA gene analysis showed that novel Chlamydia species, as well as novel C. psittaci strains, are to be found among wild birds.
Project description:Avian chlamydiosis is a zoonotic disease occurring in humans, poultry, and exotic birds. It has been suggested that some wild bird species play an important role as reservoirs for Chlamydia, especially Chlamydia psittaci. Whereas C. psittaci is the predominant chlamydial agent in birds, in the present study we have determined the prevalence of different species of Chlamydia among selected wild bird species in Poland using a rapid and sensitive real-time PCR method. In total, 369 free-living birds from 35 bird species and 15 orders were examined. Samples from 27 birds (7.3%) were positive for chlamydial DNA in the PCR; 22 positive samples (81.5%) belonged to C. psittaci, three to Chlamydia trachomatis (11.1%), and two (7.4%) classified only to the genus Chlamydia. Most of C. psittaci-positive samples belonged to five orders: Anseriformes, Columbiformes, Gruiformes, Phasianiformes, and Passeriformes. All C. trachomatis samples were obtained from Eurasian coots (Gruiformes). Two Chlamydia-positive samples not classified to any Chlamydia species were obtained from a common wood pigeon (Columbiformes) and a common buzzard (Accipitriformes). Detection of C. psittaci and C. trachomatis in free-living bird populations force to think on significance of birds as reservoir of varied Chlamydia species and their epidemiological importance.
Project description:Comparisons of the proteome of abortifacient Chlamydia psittaci isolates from sheep by two-dimensional gel electrophoresis identified a novel abundant protein with a molecular mass of 61.4 kDa and an isoelectric point of 6.41. C-terminal sequence analysis of this protein yielded a short peptide sequence that had an identical match to the viral coat protein (VP1) of the avian chlamydiaphage Chp1. Electron microscope studies revealed the presence of a 25-nm-diameter bacteriophage (Chp2) with no apparent spike structures. Thin sections of chlamydia-infected cells showed that Chp2 particles were located to membranous structures surrounding reticulate bodies (RBs), suggesting that Chp2 is cytopathic for ovine C. psittaci RBs. Chp2 double-stranded circular replicative-form DNA was purified and used as a template for DNA sequence analysis. The Chp2 genome is 4,567 bp and encodes up to eight open reading frames (ORFs); it is similar in overall organization to the Chp1 genome. Seven of the ORFs (1 to 5, 7, and 8) have sequence homologies with Chp1. However, ORF 6 has a different spatial location and no cognate partner within the Chp1 genome. Chlamydiaphages have three viral structural proteins, VP1, VP2, and VP3, encoded by ORFs 1 to 3, respectively. Amino acid residues in the phiX174 procapsid known to mediate interactions between the viral coat protein and internal scaffolding proteins are conserved in the Chp2 VP1 and VP3 proteins. We suggest that VP3 performs a scaffolding-like function but has evolved into a structural protein.
Project description:Chlamydia spp. are a group of obligate intracellular pathogens causing a number of diseases in animals and humans. Avian chlamydiosis (AC), caused by Chlamydia psittaci (C. psittaci) as well as new emerging C. avium, C. gallinacea and C. ibidis, have been described in nearly 500 avian species worldwidely. The Crested Ibis (Nipponia nippon) is a world endangered avian species with limited population and vulnerable for various infections. To get a better understanding of the prevalence of Chlamydia spp. in the endangered Crested Ibis, faecal samples were collected and analysed. The results confirmed that 20.20% (20/99) of the faecal samples were positive for Chlamydiaceae and were identified as C. ibidis with co-existence of C. psittaci in one of the 20 positive samples. In addition, ompA sequence of C. psittaci obtained in this study was classified into the provisional genotype Matt116, while that of C. ibidis showed high genetic diversity, sharing only 77% identity with C. ibidis reference strain 10-1398/6. We report for the first time the presence of C. ibidis and C. psittaci in the Crested Ibis, which may indicate a potential threat to the endangered birds and should be aware of the future protection practice.
Project description:Chlamydiae are parasitic bacteria characterized by a temporally regulated developmental cycle. In the early stage of the cycle, metabolically inert elementary bodies reorganize to dividing reticulate bodies, a process about which little is known. The purpose of this investigation was to identify and clone chlamydial genes that are expressed preferentially during the early stage of the developmental cycle of Chlamydia psittaci 6BC. Several potential early genes were cloned with highly radioactive, host-free-generated RNA probes to screen a genomic library. One clone appeared to encode a gene that was particularly well expressed at 1 h postinfection. In further characterization, we found that it encodes two complete open reading frames and one partial open reading frame of 370 codons. The partial open reading frame, designated gltX, is very similar to bacterial glutamyl-tRNA synthetases and was demonstrated to be transcribed in vivo at 24 h postinfection by primer extension analysis. A lysine-rich open reading frame (LRO) of 117 codons was found upstream and divergent from gltX. The LRO lacks homology to known proteins, and we were unable to demonstrate that it is transcribed in vivo. The third open reading frame, of 182 codons, was found to be convergent with and partially overlap the LRO. It was confirmed to be preferentially expressed within the first 1.5 h of infection by Northern (RNA) blot analysis and was designated the early upstream open reading frame (EUO). Like the LRO, the EUO is not homologous to known proteins. A major potential transcription start site of the EUO was identified by primer extension analysis. However, the sequence upstream of the site does not closely resemble the consensus recognition sequences of bacterial sigma factors even though it is AT rich. The EUO is the first chlamydial gene specific to the early stage to be cloned and sequenced.