Project description:<p>Next generation sequencing has aided characterization of genomic variation. While whole genome sequencing may capture all possible mutations, whole exome sequencing is more cost-effective and captures most phenotype-altering mutations. Initial strategies for exome enrichment utilized a hybridization-based capture approach. Recently, amplicon-based methods were designed to simplify preparation and utilize smaller DNA inputs. We appraised two hybridization capture-based and two amplicon-based whole exome sequencing methods, utilizing both Illumina and Ion Torrent sequencers, comparing on-target alignment, uniformity, and variant calling. While the amplicon methods had higher on-target rates, the hybridization capture-based approaches showed better uniformity. All methods identified many of the same single nucleotide variants, but each amplicon-based method missed variants detected by the other three methods and reported additional variants discordant with all three other technologies. Many of these potential false positives or negatives appear to result from limited coverage, low variant frequency, vicinity to read starts/ends, or the need for platform-specific variant calling algorithms. All methods demonstrated effective copy number variant calling when compared against a single nucleotide polymorphism array. This study illustrates some differences between various whole exome sequencing approaches, highlights the need for selecting appropriate variant calling based on capture method, and will aid laboratories in selecting their preferred approach.</p>
| phs000938 | dbGaP
Project description:A systematic evaluation of hybridization-based mouse exome capture system
Project description:Agilent whole exome hybridisation capture was performed on genomic DNA derived from Chondrosarcoma cancer and matched normal DNA from the same patients. Next Generation sequencing performed on the resulting exome libraries and mapped to build 37 of the human reference genome to facilitate the identification of novel cancer genes. Now we aim to re find and validate the findings of those exome libraries using bespoke pulldown methods and sequencing the products.
Project description:Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. DNA copy number profiles generated with a new tool, ENCODER, were compared to DNA copy number profiles from SNP6, NimbleGen and low-coverage Whole Genome Sequencing. DNA copy number profiles of mouse squamous cell lung cancer (SCLC) were generated with ENCODER from whole exome sequencing data and compared to results from the NimbleGen array
Project description:Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. DNA copy number profiles generated with a new tool, ENCODER, were compared to DNA copy number profiles from SNP6, NimbleGen and low-coverage Whole Genome Sequencing. DNA copy number profiles of melanoma PDX sample were generated with ENCODER from whole exome sequencing data and compared to results from the SNP6 platform.
Project description:Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. DNA copy number profiles generated with a new tool, ENCODER, were compared to DNA copy number profiles from SNP6, NimbleGen and low-coverage Whole Genome Sequencing.
Project description:Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. DNA copy number profiles generated with a new tool, ENCODER, were compared to DNA copy number profiles from SNP6, NimbleGen and low-coverage Whole Genome Sequencing.
2014-08-12 | GSE60254 | GEO
Project description:Comparison of solution-based exome capture methods for next generation sequencing