Project description:Generalist arthropod herbivores rapidly adapt to a broad range of host plants. However, the extent of transcriptional reprogramming in the herbivore and its hosts associated with adaptation remains poorly understood. Using the spider mite Tetranychus urticae and tomato as models with available genomic resources, we investigated the reciprocal genome-wide transcriptional changes in both spider mite and tomato as a consequence of mite’s adaptation to tomato We used microarray to assess global gene expression in Solanum lycopersicum cv. Moneymaker upon Tetranychus urticae attack by tomato-adapted and non-adapted spider mite lines.
Project description:The red spider mite, Tetranychus evansi, is a oligophagous specialist mite pest of Solanaceae plants. Here, we described tomato transcriptional responses to T. evansi feeding and compared them to responses to tomato-adapted and -non-adapted strains of generalist herbivorous spider mite Tetranychus urticae. We used microarray to assess global gene expression in Solanum lycopersicum cv. Heinz 1706 upon T. evansi attack.
Project description:The two-spotted spider mite, Tetranychus urticae, is one of the most significant mite pests in agriculture that can feed on more than 1,100 plant hosts, including model plants Arabidopsis thaliana and tomato, Solanum lycopersicum. In order to refine the involvement of jasmonic acid (JA) in mite-induced responses, we analyzed transcriptional changes in tomato JA signaling mutant defenseless1 (def-1) upon JA treatment and spider mite herbivory. We used microarray to assess global gene expression in Solanum lycopersicum def-1 cv. Castlemart upon jasmonic acid treatment and Tetranychus urticae attack. 1 month old def-1 tomato plants were subjected to Tetranychus urticae attack through application of 100 adult mites on a terminal leaflet of leaf 3 for 24 h or plants were sprayed with 1 mM jasmonic acid solution.
Project description:The two-spotted spider mite, Tetranychus urticae, is one of the most significant mite pests in agriculture that can feed on more than 1,100 plant hosts, including model plants Arabidopsis thaliana and tomato, Solanum lycopersicum. In order to refine the involvement of jasmonic acid (JA) in mite-induced responses, we analyzed transcriptional changes in tomato JA signaling mutant defenseless1 (def-1) upon JA treatment and spider mite herbivory. We used microarray to assess global gene expression in Solanum lycopersicum def-1 cv. Castlemart upon jasmonic acid treatment and Tetranychus urticae attack.
2015-01-05 | GSE61075 | GEO
Project description:Whole genome tomato transcriptional response to Tetranychus urticae herbivory
Project description:In an experimental evolutionary set-up, we transferred a genetically diverse strain of the spider mite Tetranychus urticae from its common host bean to tomato where replicated populations were allowed to adapt. By sampling the transcriptomes of non-adapted and adaptes mites feeding on bean and tomato, we identified gene-expression changes in the spider mite affiliated with tomato adaptation. Transcriptional analysis revealed that both constitutive gene-expression levels as well as the transcriptional plasticity of genes were affected. Specifically, tomato adaptation resulted in a large set of constitutively down-regulated genes of unknown function in adapted mites compared to non-adapted mites. Additionally, upon tomato exposure, adapted mites exhibited an increased transcriptional plasticity of genes coding for detoxifying enzymes and xenobiotic transporters. Remarkably, adapted mites further exhibited a differential effect on host plant physiology compared to non-adapted mites. Adapted mites induced a greater chlorotic area on tomato leaves and triggered attenuated induced responses relative to those induced by non-adapted mites.
Project description:Tomato plants are commonly attacked by herbivorous mites, including by generalist Tetranychus urticae and specialists Tetranychus evansi and Aculops lycopersici. Mite feeding induces plant defense responses that reduce mite performance. However, via poorly understood mechanisms, T. evansi and A. lycopersici suppress plant defenses and, consequently, maintain a high performance on tomato. Accordingly, on a shared host, non-adapted T. urticae can be facilitated by either of the specialist mites, likely via the suppression of plant defenses. To better understand defense suppression and indirect plant-mediated interactions between herbivorous mites, we used microarrays to analyze transcriptomic changes in tomato after attack by either a single mite species (T. urticae, T. evansi, A. lycopersici) or two species simultaneously (T. urticae plus T. evansi or T. urticae plus A. lycopersici). Additionally, we assessed mite-induced changes in defense-associated phytohormones using LC-MS/MS. Compared to non-infested controls, jasmonates (JAs) and salicylate (SA) accumulated to higher amounts upon all mite-infestation treatments, but lowest increases were detected after single infestations with defense-suppressors. Strikingly, whereas 8 to 10% of tomato genes was differentially expressed upon single infestations with T. urticae or A. lycopersici, only 0.1% was altered in T. evansi-infested plants. Transcriptome analysis of dual-infested leaves revealed that T. evansi dampened T. urticae-triggered host responses on a genome-wide scale, while A. lycopersici primarily suppressed T. urticae-induced JA defenses. Our results provide valuable new insights into the mechanisms underlying host defense suppression and the plant-mediated facilitation of competing herbivores.
Project description:The two-spotted spider mite, Tetranychus urticae, is one of the most significant mite pests in agriculture that can feed on more than 1,100 plant hosts, including model plants Arabidopsis thaliana and tomato, Solanum lycopersicum. Here, we described tomato transcriptional responses to spider mite feeding and compared them to Arabidopsis in order to determine conserved and divergent responses to this pest. 2,133 differentially expressed genes (DEGs) were detected at 1, 3, 6, 12 or 24 hours post spider mite infestation (hpi) relative to non-infested control plants. Based on Biological Process Gene Ontology annotations, improved in the course of our analysis, DEGs were grouped in 60 significantly enriched gene sets that highlighted perception of the spider mite attack (1 hpi), metabolic reprogramming (3-6 hpi), and establishment and maintenance of the defense responses (6-24 hpi). We used microarray to assess global gene expression in Solanum lycopersicum cv. Heinz 1706 upon Tetranychus urticae attack. 1 month old tomato plants were subjected to Tetranychus urticae attack through application of 100 adult mites on a terminal leaflet of leaf 3 for various periods of time (timecourse scenario) or hundreds of mites for 1 hour (feeding site scenario).