Project description:Gene expression profiling reveals a potential effect of microsphere keratin in stimulating hair growth in vivo Mice back was depilated and then treated with 1% milliQ, 1% minoxidil, 1% keratin, 1% microsphere keratin for 20 days. Then the skin was collected and RNA was extracted from thetreatd skin as explained in the following section. The microarray was conducted for two biological replicates
Project description:Brown fat generates heat via the mitochondrial uncoupling protein UCP1, defending against hypothermia and obesity. Recent data suggest that there are two distinct types of brown fat: classical brown fat derived from a myf-5 cellular lineage and UCP1-positive cells that emerge in white fat from a non-myf-5 lineage. Here, we report the isolation of “beige” cells from murine white fat depots. Microarray analysis of the differentiated clonal inguinal and interscapular adipocytes in the presence of forskolin (10mM). These samples were profiled using Affymetrix mouse 430 2.0 arrays, 26 samples in total.
Project description:The epidermal barrier protects the body against mechanical injury, infection and dehydration. The respective contribution of type I and type II keratins which form the major cytoskeleton in epidermal keratinocytes in barrier formation and stress protection is incompletely understood. Here, we reveal a novel mechanism by which keratins control anti-oxidant responses through barrier-dependent and cell-autonomous mechanisms. Mice lacking the entire type I (KtyI) or type II (KtyII) keratin gene clusters suffer from distinct prenatal barrier defects. Comparative transcriptome profiling identifies essential cornified envelope components and reveals strong upregulation of the bZIP transcription factor Nrf2 in situ. Isolated keratinocytes from both strains of mice show elevated mitochondrial oxygen consumption and Nrf2 activity, decreased upon keratin re-expression. We propose a model in which keratins control mitochondria-derived oxidative stress via Nrf2 activation. Our findings reveal major contributions of keratins to chronic inflammation and autoimmune disorders. Total RNA obtained from E18.5 embryo back skin from typeI and II keratin knockout compared with respective wild type.
Project description:Using microarray analysis, we explored the differences in gene expression in wounded and intact skin using murine model. Injured skin samples were examined at days 1 and 4 post injury. The results provide the detailed molecular profile of the the genetic response to injury.
Project description:Keratin cytoskeletal proteins are crucial for the maintenance of skin integrity. Mutations in genes coding for K5 and K14 cause the human skin disorder epidermolysis bullosa simplex (EBS) leading to substantial alterations in keratin assembly and collapse of keratin filaments into cytoplasmic protein aggregates. The phenotypic consequences of K5 and K14 mutations comprise fragility of basal keratinocytes and skin blistering upon mild mechanical trauma. Treatment of EBS is only supportive and consists primarily of wound care and avoidance of mechanical stress. Besides symptomatic care, no efficient therapeutic treatment is available for EBS. In the present study, we used patient-derived keratinocytes carrying the most frequent K14.R125C mutation as a reproducible EBS model to understand EBS pathomechanisms and to develop a therapy approach aimed to restore a functional keratin network. Numerous post-translational modifications (PTMs) such as phosphorylation have been reported to occur on keratins, which affect the organization of keratin networks. Whether keratin mutations affect the occurrence of PTMs and thereby keratin aggregation in EBS is yet unknown. We find that the K14.R125C mutation alters keratin and keratin-associated protein PTMs in distinct ways and suggest that disease mutations and altered PTMs aggravate keratin aggregation. We reason that chemical compounds affecting the interplay of mutations and PTMs enable the reformation of a keratin cytoskeleton from aggregates are potential candidates for combating EBS.
Project description:T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy. Despite recent advances in treatments with intensified chemotherapy regimens, relapse rates and associated morbidities remain high. In this context, metabolic dependencies have emerged as a druggable opportunity for the treatment of leukemia. Here, we tested the antileukemic effects of MB1-47, a newly developed mitochondrial uncoupling compound. MB1-47 treatment in T-ALL cells robustly inhibited cell proliferation via both cytostatic and cytotoxic effects as a result of compromised mitochondrial energy and macromolecule depletion, which severely impair nucleotide biosynthesis. Mechanistically, acute treatment with MB1-47 in primary leukemias promoted AMPK activation and downregulation of mTOR signaling, stalling anabolic pathways that support leukemic cell survival. Indeed, MB1-47 treatment in mice harboring murine NOTCH1-induced leukemias or human T-ALL PDXs led to a potent antileukemic effect with 2-fold extension in survival without overlapping toxicities. Overall, our findings demonstrate a critical role for mitochondrial oxidative phosphorylation in T-ALL and uncover MB1-47-driven mitochondrial uncoupling as a novel therapeutic strategy for the treatment of this disease.
Project description:Epidermolysis bullosa simplex (EBS) is a skin disorder caused by mutations in keratin (K) 5 or K14 genes. It is widely regarded as a mechanobullous disease, resulting from a weakened cytoskeleton, causing extensive cytolysis. It was postulated by others that certain K14 mutations induce TNF-alfa and increase apoptosis. Here, we report that in K5-/- mice , the mRNA and protein levels of TNF-alfa remain unaltered. Transcriptome analysis of K5-/- mice revealed however, that the pro-inflammatory cytokines interleukin-6 and interleukin-1beta were significantly upregulated at the mRNA level in K5-/- mouse skin. These results were confirmed by TaqMan real-time PCR and ELISA assays. We hypothesize that keratin mutations contribute to EBS in a mouse model by inducing local inflammation that mediates a stress response. Experiment Overall Design: Two groups were K5-/- skin and wildtype . Six animals were included in each group. All the total RNA samples were isolated from tissues taken immediately after birth, and were pooled for later microarray experiments. Using realtime PCR and ELISA analysis confirmed our microarray result.
Project description:Digital dermatitis is a painful foot disease compromising welfare in dairy cattle. The disease has a complex multibacterial aetiology, but little is known about its pathogenesis. In this study, gene expression in skin biopsies from five bovine digital dermatitis lesions and five healthy bovine feet was compared using RNA-Seq technology. Differential gene expression was determined after mapping transcripts to the Btau 4.0 genome. Pathway analysis identified gene networks involving differentially expressed transcripts. Bovine digital dermatitis lesions had increased expression of mRNA for a2-macroglobulin-like 1, a protein potentially involved in bacterial immune evasion and bacterial survival. There was increased expression of keratin 6A and interleukin 1b mRNA in bovine digital dermatitis lesions, but reduced expression of most other keratin and keratin-associated genes. There was little evidence of local immune reactions to the bacterial infection present in lesions. Ten samples were processed; five normal skin biopsies from the hind foot skin and five digital dermatitis lesions (large (>2cm) red raw in appearance).
Project description:Skin aging is one of the hallmarks of the aging process that causes physiological and morpho-logical changes. Recently, several nutritional studies were conducted to delay or suppress the aging process. This study investigated whether nutritional supplementation of the eggshell membrane (ESM) has a beneficial effect on maintaining skin health and improving the skin ag-ing process using neonatal normal human epidermal keratinocytes (NHEK-Neo). 1 mg/mL of enzymatically hydrolyzed ESM (eESM) upregulated the expression of keratinocyte differentiation markers, including keratin 1, filaggrin and involucrin, and changed the keratinocyte morphology.