Project description:Widely reported discrepancies between metabolic flux and transcripts or enzyme levels in bacterial metabolism imply complex regulation mechanisms need to be considered, especially in new bacterial platforms for bioremediation and bioproduction. Comamonas testosteroni strains, which metabolize various natural and xenobiotic aromatic compounds, represent such platforms whose metabolic regulations are still unknown. Here, we identify analogous multi-level regulation mechanisms in the metabolism of two lignin-related (4-hydroxybenzoate and vanillate) and one plastic-related (terephthalate) aromatic compounds in C. testosteroni KF-1, a wastewater isolate. Transcription-level regulation controlled initial catabolism and cleavage of the compounds, but subsequent carbon fluxes in central carbon metabolism are governed by metabolite-level thermodynamic regulation. Quantitative 13C-fingerprinting of tricarboxylic acid cycle and cataplerotic reactions elucidate key carbon routing that is not evident from enzyme abundance changes. Therefore, as-needed transcriptional activation of aromatic catabolism is coupled with metabolic fine-tuning of central metabolism, thus delineating pathway candidates for different metabolic manipulations.
Project description:Comamonas testosteroni KF-1 is a model organism for the elucidation of the novel biochemical degradation pathways for xenobiotic 4-sulfophenylcarboxylates (SPC) formed during biodegradation of synthetic 4-sulfophenylalkane surfactants (linear alkylbenzenesulfonates, LAS) by bacterial communities. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 6,026,527 bp long chromosome (one sequencing gap) exhibits an average G+C content of 61.79% and is predicted to encode 5,492 protein-coding genes and 114 RNA genes.
Project description:Numerous studies have reported the masculinization of freshwater wildlife exposed to androgens in polluted rivers. Microbial degradation is a crucial mechanism for eliminating steroid hormones from contaminated ecosystems. The aerobic degradation of testosterone was observed in various bacterial isolates. However, the ecophysiological relevance of androgen-degrading microorganisms in the environment is unclear. Here, we investigated the biochemical mechanisms and corresponding microorganisms of androgen degradation in aerobic sewage. Sewage samples collected from the Dihua Sewage Treatment Plant (Taipei, Taiwan) were aerobically incubated with testosterone (1?mM). Androgen metabolite analysis revealed that bacteria adopt the 9, 10-seco pathway to degrade testosterone. A metagenomic analysis indicated the apparent enrichment of Comamonas spp. (mainly C. testosteroni) and Pseudomonas spp. in sewage incubated with testosterone. We used the degenerate primers derived from the meta-cleavage dioxygenase gene (tesB) of various proteobacteria to track this essential catabolic gene in the sewage. The amplified sequences showed the highest similarity (87-96%) to tesB of C. testosteroni. Using quantitative PCR, we detected a remarkable increase of the 16S rRNA and catabolic genes of C. testosteroni in the testosterone-treated sewage. Together, our data suggest that C. testosteroni, the model microorganism for aerobic testosterone degradation, plays a role in androgen biodegradation in aerobic sewage.
Project description:Antimony, like arsenic, is a toxic metalloid widely distributed in the environment. Microbial detoxification of antimony has recently been identified. Here we describe a novel bacterial P1B-type antimonite (Sb(III))-translocating ATPase from the antimony-mining bacterium Comamonas testosterone JL40 that confers resistance to Sb(III). In a comparative proteomics analysis of strain JL40, an operon (ant operon) was up-regulated by Sb(III). The ant operon includes three genes, antR, antC and antA. AntR belongs to the ArsR/SmtB family of metalloregulatory proteins that regulates expression of the ant operon. AntA belongs to the P1B family of the P-type cation-translocating ATPases. It has both similarities to and differences from other members of the P1B-1 subfamily and appears to be the first identified member of a distinct subfamily that we designate P1B-8. Expression AntA in E. coli AW3110 (Δars) conferred resistance to Sb(III) and reduced the intracellular concentration of Sb(III) but not As(III) or other metals. Everted membrane vesicles from cells expressing antA accumulated Sb(III) but not As(III), where uptake in everted vesicles reflects efflux from cells. AntC is a small protein with a potential Sb(III) binding site, and co-expression of AntC with AntA increased resistance to Sb(III). We propose that AntC functions as an Sb(III) chaperone to AntA, augmenting Sb(III) efflux. The identification of a novel Sb(III)-translocating ATPase enhances our understanding of the biogeochemical cycling of environmental antimony by bacteria.
Project description:Widely reported discrepancies between metabolic flux and transcripts or enzyme levels in bacterial metabolism imply complex regulation mechanisms need to be considered, especially in new bacterial platforms for bioremediation and bioproduction. Comamonas testosteroni strains, which metabolize various natural and xenobiotic aromatic compounds, represent such platforms whose metabolic regulations are still unknown. Here, we identify analogous multi-level regulation mechanisms in the metabolism of two lignin-related (4-hydroxybenzoate and vanillate) and one plastic-related (terephthalate) aromatic compounds in C. testosteroni KF-1, a wastewater isolate. Transcription-level regulation controlled initial catabolism and cleavage of the compounds, but subsequent carbon fluxes in central carbon metabolism are governed by metabolite-level thermodynamic regulation. Quantitative 13C-fingerprinting of tricarboxylic acid cycle and cataplerotic reactions elucidate key carbon routing that is not evident from enzyme abundance changes. Therefore, as-needed transcriptional activation of aromatic catabolism is coupled with metabolic fine-tuning of central metabolism, thus delineating pathway candidates for different metabolic manipulations.
Project description:In Comamonas testosteroni strain BR6020, metabolism of isovanillate (iVan; 3-hydroxy-4-methoxybenzoate), vanillate (Van; 4-hydroxy-3-methoxybenzoate), and veratrate (Ver; 3,4-dimethoxybenzoate) proceeds via protocatechuate (Pca; 3,4-dihydroxybenzoate). A 13.4-kb locus coding for the catabolic enzymes that channel the three substrates to Pca was cloned. O demethylation is mediated by the phthalate family oxygenases IvaA (converts iVan to Pca and Ver to Van) and VanA (converts Van to Pca and Ver to iVan). Reducing equivalents from NAD(P)H are transferred to the oxygenases by the class IA oxidoreductase IvaB. Studies using whole cells, cell extracts, and reverse transcriptase PCR showed that degradative activity and expression of vanA, ivaA, and ivaB are inducible. In succinate- and Pca-grown cells, there is negligible degradative activity towards Van, Ver, and iVan and little to no expression of vanA, ivaA, and ivaB. Growth on Van or Ver results in production of oxygenases with activity towards Van, Ver, and iVan and expression of vanA, ivaA, and ivaB. With iVan-grown cultures, ivaA and ivaB are expressed, and in assays with whole cells, production of the iVan oxygenase is observed, but there is little activity towards Van or Ver. In cell extracts, though, Ver metabolism is observed, which suggests that the system mediating iVan uptake in whole cells does not mediate Ver uptake.
Project description:C. testosteroni is a research topic that can degrade steroid hormones into water and carbon dioxide through a series of enzymes in the body. Short-chain dehydrogenase (SDR) are a class of NAD (P) H-dependent oxidoreductases in C. testosteroni. Its main function is catalyzing the redox of the hydroxyl/ketone group of the hormone. In this paper, a SDR gene(SDRx) is cloned from C. testosteroni ATCC11996 and expressed. The polyclonal antibody was prepared and the SDRx gene knocked out by homologous recombination. Wild type and mutant C. testosteroni induced by testosterone, estradiol, estrone and estriol. The growth curves of the bacteria were measured by spectrophotometer. ELISA established the expression of SDRx protein, and high-performance liquid chromatography(HPLC) detected the contents of various hormones. The results show that the growth of wild type was faster than mutant type induced by testosterone. The concentration of SDRx is 0.318?mg/ml under testosterone induction. It has a great change in steroid hormones residue in culture medium measured by HPLC: Testosterone residue in the mutant type group was 42.4 % more than the wild type in culture medium. The same thing happens with induced by estrone. In summary, this SDRx gene involved in the degradation of testosterone and estradiol, and effects the growth of C. testosteroni.
Project description:Members of Comamonas testosteroni are environmental microorganisms that are usually found in polluted environment samples. They utilize steroids and aromatic compounds but rarely sugars, and show resistance to multiple heavy metals and multiple drugs. However, comprehensive genomic analysis among the C. testosteroni strains is lacked.To understand the genome bases of the features of C. testosteroni, we sequenced 10 strains of this species and analyzed them together with other related published genome sequences. The results revealed that: 1) the strains of C. testosteroni have genome sizes ranging from 5.1 to 6.0 Mb and G?+?C contents ranging from 61.1% to 61.8%. The pan-genome contained 10,165 gene families and the core genome contained 3,599 gene families. Heap's law analysis indicated that the pan-genome of C. testosteroni may be open (??=?0.639); 2) by analyzing 31 phenotypes of 11 available C. testosteroni strains, 99.4% of the genotypes (putative genes) were found to be correlated to the phenotypes, indicating a high correlation between phenotypes and genotypes; 3) gene clusters for nitrate reduction, steroids degradation and metal and multi-drug resistance were found and were highly conserved among all the genomes of this species; 4) the genome similarity of C. testosteroni may be related to the geographical distances.This work provided an overview on the genomes of C. testosteroni and new genome resources that would accelerate the further investigations of this species. Importantly, this work focused on the analysis of potential genetic determinants for the typical characters and found high correlation between the phenotypes and their corresponding genotypes.