Project description:The N6-methyladenosine (m6A) is the most abundant internal modification in almost all eukaryotic messenger RNAs, and is dynamically regulated. Therefore, identification of m6A readers is especially important in determining the cellular function of m6A. YTHDF2 has recently been characterized as the first m6A reader that regulates the cytoplasmic stability of methylated RNA. Here we show that YTHDC1 is a nuclear m6A reader and report the crystal structure of the YTH domain of YTHDC1 bound to m6A-containing RNA. We further determined the structure of another YTH domain, YTHDF1, and found that the YTH domain utilizes a conserved aromatic cage to specifically recognize the methyl group of m6A. Our structural characterizations of the YTHDC1-m6A RNA complex also shed light on the molecular basis for the preferential binding of the GG(m6A)C sequence by YTHDC1 and confirm the YTH domain as a specific m6A RNA reader. PAR-CLIP (Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation) was applied to human YTHDC1 protein to identify its binding sites.
Project description:The TRIM-NHL protein Meiotic P26 (Mei-P26) governs gene expression and controls stem cell fate in Drosophila. Mei-P26 represses the translation of the key regulator protein Nanos and induces miRNA-dependent silencing to regulate stem cell renewal, differentiation and proliferation. The structural and mechanistic details of mRNA target recognition and RNA binding by its C-terminal NHL domain remain elusive. To identify its cellular target RNAs, we performed iCLIP2 experiments in cultured Drosophila SL2 cells that were transfected with Flag-tagged Mei-P26 full-length, or its NHL domain.
Project description:Global analysis of Drosophila Cys2-His2 zinc finger proteins reveals a multitude of novel recognition motifs and binding determinants.
Project description:The N6-methyladenosine (m6A) is the most abundant internal modification in almost all eukaryotic messenger RNAs, and is dynamically regulated. Therefore, identification of m6A readers is especially important in determining the cellular function of m6A. YTHDF2 has recently been characterized as the first m6A reader that regulates the cytoplasmic stability of methylated RNA. Here we show that YTHDC1 is a nuclear m6A reader and report the crystal structure of the YTH domain of YTHDC1 bound to m6A-containing RNA. We further determined the structure of another YTH domain, YTHDF1, and found that the YTH domain utilizes a conserved aromatic cage to specifically recognize the methyl group of m6A. Our structural characterizations of the YTHDC1-m6A RNA complex also shed light on the molecular basis for the preferential binding of the GG(m6A)C sequence by YTHDC1 and confirm the YTH domain as a specific m6A RNA reader.
Project description:Genome-wide identification of BRAT- and PUM-associated mRNAs reveals PUM-independent functions for BRAT in translational repression and mRNA degradation during the Drosophila maternal-to-zygotic transition
Project description:In eukaryotic cells, mitochondria are closely tethered to the endoplasmic reticulum (ER) at sites called mitochondria-associated ER membranes (MAMs). Ca2+ ion and phospholipid transfer occurs at MAMs to support diverse cellular functions. Unlike those in yeast, the protein complexes involved in phospholipid transfer at MAMs in humans have not been identified. Here, we determined the crystal structure of the tetratricopeptide repeat domain of PTPIP51 (PTPIP51_TPR), a mitochondrial protein that interacts with the ER-anchored VAPB protein at MAMs. The structure of PTPIP51_TPR showed an archetypal TPR fold, and an electron density corresponding to an unidentified lipid-like molecule probably derived from the protein expression host was found in the structure. We revealed functions of PTPIP51 in phospholipid binding/transfer, particularly of phosphatidic acid, in vitro. Depletion of PTPIP51 in cells reduced the mitochondrial cardiolipin level. Additionally, we confirmed that the PTPIP51–VAPB interaction is mediated by the FFAT-like motif of PTPIP51 and the MSP domain of VAPB. Our findings suggest that PTPIP51 is a phospholipid transfer protein with a MAM-tethering function similar to the ERMES complex in yeast.
Project description:The TRIM-NHL protein Brain tumor (Brat) acts as a tumor suppressor in the Drosophila brain, but how it suppresses tumor formation is not completely understood. Here, we combine temperature controlled brat RNAi with transcriptome analysis to identify the immediate brat targets in Drosophila neuroblasts. Besides the known target Deadpan (Dpn), our experiments identify the transcription factor Zelda (Zld) as a critical target of brat. Our data show that Zld is expressed in neuroblasts and required to allow re-expression of Dpn in transit amplifying intermediate neural progenitors. Upon neuroblast division, Brat is enriched in one daughter cell where its NHL domain directly binds to specific motifs in the 3’UTR of dpn and zld mRNA to mediate their degradation. In brat mutants, both Dpn and Zld continue to be expressed, but inhibition of either transcription factor prevents tumorigenesis. Our genetic and biochemical data indicate that Dpn inhibition requires higher Brat levels than Zld inhibition and suggest a model where stepwise post-transcriptional inhibition of distinct factors ensures sequential generation of fates in a stem cell lineage.
Project description:DNA methylation is a conserved epigenetic gene regulation mechanism. DOMAINS REARRANGED METHYLTRANSFERASE (DRM) is a key de novo methyltransferase in plants, but how DRM acts mechanistically is poorly understood. Here, we report the crystal structure of the methyltransferase domain of tobacco DRM (NtDRM) and reveal a molecular basis for its rearranged structure. NtDRM forms a functional homo-dimer critical for catalytic activity. We also show that Arabidopsis DRM2 exists in complex with the siRNA effector ARGONAUTE4 (AGO4) and preferentially methylates one DNA strand, likely the strand acting as the template for non-coding Pol V RNA transcripts. This strand-biased DNA methylation is also positively correlated with strand-biased siRNA accumulation. These data suggest a model in which DRM2 is guided to target loci by AGO4-siRNA and involves base-pairing of associated siRNAs with nascent RNA transcripts.