Project description:Cryptosporidiosis is a zoonotic disease caused by infection with the oocyst of Cryptosporidium in human and animals. MicroRNA (miRNA) emerges as important player in regulating the innate immune response against parasitic infection. Here, we compared miRNA profiles of the glandular stomach of Cryptosporidium muris (C. muris) infected and un-infected BALB/c mice using microarray sequencing. A total of 10 miRNAs (including 3 upregulated and 7 downregulated miRNAs) with significant expression differences (|FC| ≥ 2 and P value test < 0.05) were screened after C. muris infected the glandular stomach of BALB/c mice for 8 hours. MiRWalk and miRDB online bioinformatics software were used to predict the target genes of differentially expressed miRNAs. Gene Ontology (GO) and KEGG enrichment analyses were performed for annotate the target genes. GO terms indicates that many are associated with the relevant generic transcription and ion transport. In addition, the KEGG analyses showed that the target genes were strictly related to a diverse types of tumor disease progression and the antipathogen immunity pathway. In the current study, we first reported the changes of miRNA expression profile in glandular stomach of BALB/c mice at the early phase of C. muris invasion. As such, dysregulation of miRNA expression profile may contribute to our understanding of the Cryptosporidiosis pathology. The result reported in this paper provide a new perspective into the miRNA regulatory mechanisms of Cryptosporidiosis, which may help to develop effective control strategies against Cryptosporidium.
Project description:Trichuris muris is very closely related to the human parasite T. trichiura sharing cross reactive antigens. Moreover, it is a remarkably tractable model system for dissecting immune responses and host parasite relationships and is actively being investigated in a number of laboratories worldwide. T. muris is a naturally occurring nematode parasite of mice which resides in the caecum and colon and has a direct oral faecal life cycle. High-throughput sequencing of Trichuris muris transcriptome for de novo assembly of transcripts. The main objective of this project is to recognize genes expressed in given life stages. This data is part of a pre-publication release. For information on the proper use of pre-publication data shared by the Wellcome Trust Sanger Institute (including details of any publication moratoria), please see http://www.sanger.ac.uk/datasharing/
Project description:Tabula Muris Senis is a single cell transcriptomic atlas of 18 tissues and organs from Mus musculus across the organism’s life span.
Project description:We analysed the exosomes secreted by the nematode Trichuris muris. Two replicates of exosomes were analysed using a 5600+ mass spectrometer