Project description:Although periodontitis is a widespread disease, its molecular mechanisms in human oral cells are not fully understood. Therefore, we established cell lines from the human oral cavity, including gingival keratinocytes (GK), osteoblastic lineage cells from the alveolar bone (OLAB), PDL fibroblasts (PDLF) and cementum cells (CC). Using label-free quantitative mass spectrometry, we investigated changes of the proteome of healthy human oral cells after co-cultivation with Aggregatibacter actinomycetemcomitans and Eikenella corrodens for 24 h, for the first time. Our findings show specific protein profiles for each of the human oral cell lines. This will help to understand pathologic mechanisms in periodontitis and related diseases, such as rheumatoid arthritis, diabetes mellitus or atherosclerotic vascular diseases.
2023-05-10 | PXD013919 | Pride
Project description:Description of Eikenella exigua sp. nov.
Project description:The human pathogen Eikenella corrodens synthesizes type IV pili and exhibits a phase variation involving the irreversible transition from piliated to nonpiliated variants. On solid medium, piliated variants form small (S-phase), corroding colonies whereas nonpiliated variants form large (L-phase), noncorroding colonies. We are studying the molecular basis of this phase variation in the clinical isolate E. corrodens VA1. A genomic fragment encoding the major type IV pilin was cloned from the S-phase variant of strain VA1. Sequence analysis of the fragment revealed four tandemly arranged potential open reading frames (ORFs), designated pilA1, pilA2, pilB, and hagA. Both pilA1 and pilA2 predict a type IV pilin. The protein predicted by pilB shares sequence identity with the Dichelobacter nodosus FimB fimbrial assembly protein. The protein predicted by hagA resembles a hemagglutinin. The region containing these four ORFs was designated the pilA locus. DNA hybridization and sequence analysis showed that the pilA locus of an L-phase variant of strain VA1 was identical to that of the S-phase variant. An abundant pilA1 transcript initiating upstream of pilA1 and terminating at a predicted hairpin structure between pilA1 and pilA2 was detected by several assays, as was a less abundant read-through transcript encompassing pilA1, pilA2, and pilB. Transcription from the pilA locus was nearly indistinguishable between S- and L-phase variants. Electron microscopy and immunochemical analysis showed that S-phase variants synthesize, export, and assemble pilin into pili. In contrast, L-phase variants synthesize pilin but do not export and assemble it into pili. These data suggest that a posttranslational event, possibly involving an alteration in pilin export and assembly, is responsible for phase variation in E. corrodens.