Project description:Hatchability is one of the important reproductive traits of poulty, however, molecular biological study related to hatchability of poultry is very limited. The magnum is where the egg white components are produced. During embryo development, egg white secreted by the magnum is gradually transferred into the amniotic fluid, and albumen finally migrates to the embryo. Egg white proteins are composed of ovalbumin, conalbumin, lysozyme, ovomucoid, riboflavin binding protein (RfBP), and other less abundant proteins. Mutation of ovalbumin and RfBP genes increases the mortality of embryos; therefore, egg white might be closely related to poultry hatchability. Tsaiya duck (Anas platyrhynchos) is the major egg-laying duck in Taiwan. In this study, gene expression profiling by cDNA microarray chip technology was performed using mRNA prepared from the magnum epithelium of Tsaiya ducks, and a number of differentially expressed transcripts were found. Keywords = Tsaiya duck (Anas platyrhynchos), magnum, hachability, cDNA microarray, transcriptional profiling.
Project description:Hatchability is one of the important reproductive traits of poulty, however, molecular biological study related to hatchability of poultry is very limited. The magnum is where the egg white components are produced. During embryo development, egg white secreted by the magnum is gradually transferred into the amniotic fluid, and albumen finally migrates to the embryo. Egg white proteins are composed of ovalbumin, conalbumin, lysozyme, ovomucoid, riboflavin binding protein (RfBP), and other less abundant proteins. Mutation of ovalbumin and RfBP genes increases the mortality of embryos; therefore, egg white might be closely related to poultry hatchability. Tsaiya duck (Anas platyrhynchos) is the major egg-laying duck in Taiwan. In this study, gene expression profiling by cDNA microarray chip technology was performed using mRNA prepared from the magnum epithelium of Tsaiya ducks, and a number of differentially expressed transcripts were found. Keywords = Tsaiya duck (Anas platyrhynchos), magnum, hachability, cDNA microarray, transcriptional profiling. Analysis used low hachability RNA as control samples for comparison to the experimental samples taken from high hachability group. Total RNA was isolated by the RareRNA reagent (GenePure). The MicroMax direct labeling kit (PerkinElmer) was used to prepare the labeled cDNA and further process the hybridization on the arrays. Dye swap was design with four arrays. Arrays were scanned using a GenePix 4000B microarray scanner (Axon Instruments). GenePix Pro 4.1 software was then used to acquire the raw data. The data was analyzed by Avadis software (Strand Life Science).
Project description:Abdominal fat deposition is an important trait in meat-producing ducks. F2 generations of 304 Cherry Valley and Runzhou Crested White ducks were studied to identify genes and lncRNAs affecting abdominal fat deposition. RNA sequencing was used to study abdominal fat tissue of four ducks each with high or low abdominal fat rates. In all, 336 upregulated and 297 downregu-lated mRNAs, and 95 upregulated and 119 downregulated lncRNAs were identified. Target gene prediction of differentially expressed lncRNAs identified 602 genes that were further subjected to Gene Ontology and KEGG pathway analysis. The target genes were enriched in pathways associ-ated with fat synthesis and metabolism and participated in biological processes, including Linoleic acid metabolism, lipid storage, and fat cell differentiation, indicating that these lncRNAs play an important role in abdominal fat deposition. This study lays foundations for exploring molecu-lar mechanisms underlying the regulation of abdominal fat deposition in ducks and provides a theoretical basis for breeding high-quality meat-producing ducks.
Project description:To investigate the dietary linseed oil in the regulation of PUFA synthesis, we detected the genes in the livers and breast muscles of ducks. We then performed gene expression profiling analysis using data obtained from RNA-seq of 10 livers and 10 breast muscles from 10 individual ducks at two group.
Project description:Our aim was to classify and quantify transcripts identified in 24-h-cultured primary duck hepatocytes and construct a protein–protein interaction network to serve as a reference for host factors associated with hepadnavirus infection. Methods: The transcriptome of 24h-cultured PDHs was analyzed by the pair-end sequencing on the Illumina Solexa platform. High-quality reads were mapped to the Anas platyrhynchos genome with TopHat v2.0.12 software. TopHat allows multiple alignments per read and default parameters were used. Cufflinks v2.2.1 software was later used for analyses that included transcript assembly and FPKM value calculations to quantify gene expression; this program was also run with default parameters. Results: A total of 87.8 million high-quality reads were obtained from three primary duck hepatocyte samples isolated from three separate 1-day-old Anas domesticus ducklings. The reads (mean length 92.21 bases) were mapped to the Anas platyrhynchos genome. A total of 13,541 genes with > 1 fragments per kilobase of transcript per million mapped reads values were expressed in the 24-h-cultured primary duck hepatocyte samples.Using gene ontology analysis, expressed genes were assigned to functional categories. A total of 182 genes expressed in all three separate primary duck hepatocyte samples were identified as liver-specific genes. Conclusions: Transcriptome and gene ontology analyses of 24-h-cultured primary duck hepatocytes indicate that these cells retain hepatocyte-specific biological characteristics and can be used as a model system for hepadnavirus infection. A novel protein–protein interaction network suggests that host factors regulating or inhibiting innate immunity are directly associated with hepadnavirus. The transcriptome of 24h-cultured PDHs was analyzed by the paired-end sequencing on the Illumina Solexa platform.
Project description:Our aim was to classify and quantify transcripts identified in 24-h-cultured primary duck hepatocytes and construct a protein–protein interaction network to serve as a reference for host factors associated with hepadnavirus infection. Methods: The transcriptome of 24h-cultured PDHs was analyzed by the pair-end sequencing on the Illumina Solexa platform. High-quality reads were mapped to the Anas platyrhynchos genome with TopHat v2.0.12 software. TopHat allows multiple alignments per read and default parameters were used. Cufflinks v2.2.1 software was later used for analyses that included transcript assembly and FPKM value calculations to quantify gene expression; this program was also run with default parameters. Results: A total of 87.8 million high-quality reads were obtained from three primary duck hepatocyte samples isolated from three separate 1-day-old Anas domesticus ducklings. The reads (mean length 92.21 bases) were mapped to the Anas platyrhynchos genome. A total of 13,541 genes with > 1 fragments per kilobase of transcript per million mapped reads values were expressed in the 24-h-cultured primary duck hepatocyte samples.Using gene ontology analysis, expressed genes were assigned to functional categories. A total of 182 genes expressed in all three separate primary duck hepatocyte samples were identified as liver-specific genes. Conclusions: Transcriptome and gene ontology analyses of 24-h-cultured primary duck hepatocytes indicate that these cells retain hepatocyte-specific biological characteristics and can be used as a model system for hepadnavirus infection. A novel protein–protein interaction network suggests that host factors regulating or inhibiting innate immunity are directly associated with hepadnavirus.
Project description:Selective breeding of domestic dogs has generated diverse breeds often optimized for performing specialized tasks. Despite the heritability of breed-typical behavioral traits, identification of causal loci has proven challenging due to the complexity of canine population structure. We overcome longstanding difficulties in identifying genetic drivers of canine behavior by developing an innovative framework for understanding relationships between breeds and the behaviors that define them utilizing genetic data for over 4,000 domestic, semi-feral and wild canids and behavioral survey data for over 46,000 dogs. We identify ten major canine genetic lineages and their behavioral correlates and show that breed diversification is predominantly driven by non-coding regulatory variation. We determine that lineage-associated genes converge in neurodevelopmental co-expression networks, identifying a sheepdog-associated enrichment for interrelated axon guidance functions. This work presents a scaffold for canine diversification that positions the domestic dog as an unparalleled system for revealing the genetic origins of behavioral diversity.