Project description:Transcriptional profiling of Haloferax mediterranei comparing control wild-type strain with M-NM-^TphaA1 strain, in which phaA1 gene are knockouted. M-NM-^TphaA1 strain can accumulate PHB only. Goal was to explore the PHA biosynthetic pathway and to determine their impact on primary metabolism in H. mediterranei. Total RNA from the control Haloferax mediterranei and its M-NM-^TphaA1 strain were used to generate target cDNA, and then hybridized to 8*15K Haloferax mediterranei genome array genechips, representing about 3800 genes.
Project description:Transcriptional profiling of Haloferax mediterranei comparing control wild-type strain with M-NM-^TphaEC strain, in which PHA synthase genes are knockouted. M-NM-^TphaEC strain is deficient in PHBV accumulation. Goal was to explore the PHBV biosynthetic pathway and to determine their impact on primary metabolism in H. mediterranei. Total RNA from the control Haloferax mediterranei and its M-NM-^TphaEC strain were used to generate target cDNA, and then hybridized to 8*15K Haloferax mediterranei genome array genechips, representing about 3800 genes.
Project description:Transcriptional profiling of Haloferax mediterranei comparing control wild-type strain with ΔphaA1 strain, in which phaA1 gene are knockouted. ΔphaA1 strain can accumulate PHB only. Goal was to explore the PHA biosynthetic pathway and to determine their impact on primary metabolism in H. mediterranei.
Project description:Transcriptional profiling of Haloferax mediterranei comparing control wild-type strain with ΔphaEC strain, in which PHA synthase genes are knockouted. ΔphaEC strain is deficient in PHBV accumulation. Goal was to explore the PHBV biosynthetic pathway and to determine their impact on primary metabolism in H. mediterranei.