Project description:Excitatory synapses occur mainly on dendritic spines, and spine density is usually correlated with the strength of excitatory synaptic transmission. We report that Nr4a1, an activity-inducible gene encoding a nuclear receptor, regulates the density and distribution of dendritic spines in CA1 pyramidal neurons. Nr4a1 overexpression resulted in elimination of the majority of spines; however, postsynaptic densities were preserved on dendritic shafts, and the strength of excitatory synaptic transmission was unaffected, showing that excitatory synapses can be dissociated from spines. mRNA expression profiling studies suggest that Nr4a1-mediated transcriptional regulation of the actin cytoskeleton contributes to this effect. Under conditions of chronically elevated activity, when Nr4a1 was induced, Nr4a1 knockdown increased the density of spines and PSDs specifically at the distal ends of dendrites. Thus, Nr4a1 is a key component of an activity-induced transcriptional program that regulates the density and distribution of spines and synapses. After 10 days in culture, dissociated mouse hippocampal neurons in 6-well plates were infected with lentivirus expressing either Flag-Nr4a1 or GFP and incubated for 6 days to allow for transgene expression. Total RNA was then isolated using RNeasy Plus kit (QIAGEN). Samples passing an mRNA quality check proceeded to quantitative analysis on Agilent-026655 4x44 Mouse Microarrays.
Project description:Excitatory synapses occur mainly on dendritic spines, and spine density is usually correlated with the strength of excitatory synaptic transmission. We report that Nr4a1, an activity-inducible gene encoding a nuclear receptor, regulates the density and distribution of dendritic spines in CA1 pyramidal neurons. Nr4a1 overexpression resulted in elimination of the majority of spines; however, postsynaptic densities were preserved on dendritic shafts, and the strength of excitatory synaptic transmission was unaffected, showing that excitatory synapses can be dissociated from spines. mRNA expression profiling studies suggest that Nr4a1-mediated transcriptional regulation of the actin cytoskeleton contributes to this effect. Under conditions of chronically elevated activity, when Nr4a1 was induced, Nr4a1 knockdown increased the density of spines and PSDs specifically at the distal ends of dendrites. Thus, Nr4a1 is a key component of an activity-induced transcriptional program that regulates the density and distribution of spines and synapses.
Project description:Injury of descending motor tracts remodels cortical circuitry and leads to enhanced neuronal excitability, thus influencing recovery following injury. The neuron-specific contributions remain unclear due to the complex cellular composition and connectivity of the CNS. We developed a microfluidics-based in vitro model system to examine intrinsic synaptic remodeling following axon damage. We found that distal axotomy of cultured rat pyramidal neurons caused dendritic spine loss at synapses onto the injured neurons followed by a persistent retrograde enhancement in presynaptic excitability over days. These in vitro results mirrored hyper-activity of directly injured corticospinal neurons in hindlimb motor cortex layer Vb following spinal cord contusion. In vitro axotomy-induced hyper-excitability coincided with elimination of inhibitory presynaptic terminals, including those formed onto dendritic spines. We identified netrin-1 as downregulated following axotomy and exogenous netrin-1 applied 2 days after injury normalized spine density, presynaptic excitability, and the fraction of inhibitory inputs onto injured neurons. These findings demonstrate a novel model system for studying the response of pyramidal circuitry to axotomy and provide new insights of neuron-specific mechanisms that contribute to synaptic remodeling.
Project description:Neurological diseases can lead to the denervation of brain regions caused by demyelination, traumatic injury or cell death. Nevertheless, the molecular and structural mechanisms underlying lesion-induced reorganization of denervated brain regions are a matter of ongoing investigation. In order to address this issue, we performed an entorhinal cortex lesion (ECL) in mouse organotypic entorhino-hippocampal tissue cultures of both sexes and studied denervation-induced plasticity of mossy fiber synapses, which connect dentate granule cells (dGCs) with CA3 pyramidal cells (CA3-PCs) and play important roles in spatial learning. Partial denervation caused a strengthening of excitatory neurotransmission in dGCs, in CA3-PCs, and their direct synaptic connections as revealed by paired recordings (GC-to-CA3). These functional changes were accompanied by ultrastructural reorganization of mossy fiber synapses, which regularly contain the plasticity-related protein synaptopodin and the spine apparatus organelle. We demonstrate that the spine apparatus organelle and its integral protein synaptopodin are associated with ribosomes in close proximity to synaptic sites and unravel a synaptopodin-related transcriptome. Notably, synaptopodin-deficient tissue preparations that lack the spine apparatus organelle, failed to express lesion-induced synaptic adjustments. Hence, synaptopodin and the spine apparatus organelle play a crucial role in regulating lesion-induced synaptic plasticity at hippocampal mossy fiber synapses.
Project description:Hippocampal synaptic plasticity is important for learning and memory formation. Homeostatic synaptic plasticity is a specific form of synaptic plasticity that is induced upon prolonged changes in neuronal activity to maintain network homeostasis. While astrocytes are important regulators of synaptic transmission and plasticity, it is largely unclear how they interact with neurons to regulate synaptic plasticity at the circuit level. Here, we show that neuronal activity blockade selectively increases the expression and secretion of IL-33 (interleukin-33) by astrocytes in the hippocampal cornu ammonis 1 (CA1) subregion. This IL-33 stimulates an increase in excitatory synapses and neurotransmission through the activation of neuronal IL-33 receptor complex and synaptic recruitment of the scaffold protein PSD-95. We found that acute administration of tetrodotoxin in hippocampal slices or inhibition of hippocampal CA1 excitatory neurons by optogenetic manipulation increases IL-33 expression in CA1 astrocytes. Furthermore, IL-33 administration in vivo promotes the formation of functional excitatory synapses in hippocampal CA1 neurons, whereas conditional knockout of IL-33 in CA1 astrocytes decreases the number of excitatory synapses therein. Importantly, blockade of IL-33 and its receptor signaling in vivo by intracerebroventricular administration of its decoy receptor inhibits homeostatic synaptic plasticity in CA1 pyramidal neurons and impairs spatial memory formation in mice. These results collectively reveal an important role of astrocytic IL-33 in mediating the negative-feedback signaling mechanism in homeostatic synaptic plasticity, providing insights into how astrocytes maintain hippocampal network homeostasis.
Project description:Gliomas are highly aggressive brain tumors characterized by poor prognosis and composed of diffusely infiltrating tumor cells that intermingle with non-neoplastic cells in the tumor microenvironment, including neurons. Neurons are increasingly appreciated as important reactive components of the glioma microenvironment, due to their role in causing hallmark glioma symptoms, cognitive deficits, and seizures, as well as potentially driving glioma progression. Separately, mTOR signaling has been shown to have pleiotropic effects in the brain tumor microenvironment, including regulation of neuronal hyperexcitability. However, the local cellular level effects of mTOR inhibition on glioma-induced neuronal alterations are not well understood. Here we employed neuron-specific profiling of ribosome-bound mRNA via ‘Ribotag’, morphometric analysis, and intravital imaging, along with pharmacological mTOR inhibition to investigate the impact of glioma burden on excitatory neuronal pathophysiology as well as the impact of mTOR inhibition on these neuronal alterations. The Ribotag analysis of peritumoral excitatory neurons showed an upregulation in transcripts encoding for F-actin binding and other dendritic spine-enriched proteins. Light and electron microscopy analyses revealed marked decreases in dendritic spine density in peritumoral neurons. Intravital two-photon imaging in peritumoral excitatory neurons revealed progressive alterations in neuronal activity, both at the population and single neuron level, throughout tumor growth. Intravital two-photon imaging also revealed altered stimulus-evoked somatic calcium activity, both in rate and temporal alignment, which was most pronounced in neurons with high-tumor burden. A single acute dose of AZD8055, a mTORC1 and mTORC2 inhibitor reversed the translational effect of glioma on neurons, increased dendritic spine density, and functional neuronal alterations. These results point to mTOR-driven pathological plasticity in neurons at the infiltrative margin of glioma – manifested by alterations in ribosome-bound mRNA, dendritic spine morphology, and stimulus-evoked neuronal activity. Collectively, our work identifies the pathological changes that peritumoral neurons experience as both hyperlocal and reversible under the influence of mTOR inhibition, providing foundational knowledge for developing therapies targeting neuronal signaling in glioma.
Project description:Information processing and storage in the brain rely on AMPA-receptors (AMPARs) and their context-dependent dynamics in synapses and extra-synaptic sites. We found that distribution and dynamics of AMPARs in the plasma membrane are controlled by Noelins, a three-member family of conserved secreted proteins expressed throughout the brain in a cell type-specific manner. Noelin tetramers tightly assemble with the extracellular domains of AMPARs and interconnect them in a network-like configuration with a variety of secreted and membrane-anchored proteins including Neurexin1, Neuritin1, and Seizure 6-like. Knockout of Noelins1-3 profoundly reduced AMPARs in synapses onto excitatory and inhibitory (inter)neurons, decreased their density and clustering in dendrites and abolished activity-dependent synaptic plasticity. Our results uncover an endogenous mechanism for extracellular anchoring of AMPARs and establish Noelin-organized networks as versatile determinants of constitutive and context-dependent neurotransmission.
Project description:we used DNA microarray analysis to identify genes that are induced by neuronal activity in excitatory neurons at the time when inhibitory synapses are forming and maturing on them. Experiment Overall Design: We cultured cortical neurons for 7 DIV until the process of inhibitory synapse development was underway, and then depolarized the neurons with 50 mM of KCl to activate L-type voltage-sensitive calcium channels (L-VSCCs) for 0, 1 or 6 hours, the cells were lysed, mRNA isolated and hybridized to Affymetrix arrays. Data were collected from 3 independent experiments.
Project description:Gray matter volume in the cerebral cortex has been consistently found to be decreased in patients with schizophrenia. The superior temporal gyrus (STG) is one of the cortical regions that exhibit the most pronounced volumetric reduction. This reduction is generally thought to reflect, at least in part, decreased number of synapses; the majority of these synapses are believed to be furnished by glutamatergic axon terminals onto the dendritic spines on pyramidal neurons. Pyramidal neurons in the cerebral cortex exhibit layer-specific connectional properties, providing neural circuit structures that support distinct aspects of higher cortical functions. For instance, dendritic spines on pyramidal neurons in layer 3 of the cerebral cortex are targeted by both local and long-range glutamatergic projections in a highly reciprocal fashion. Synchronized activities of pyramidal neuronal networks, especially in the gamma frequency band (i.e. 30-100 Hz), are critical for the integrity of higher cortical functions. Disturbances of these networks may contribute to the pathophysiology of schizophrenia by compromising gamma oscillation. This concept is supported by the following postmortem and clinical observations. First, the density of dendritic spines on pyramidal neurons in layer 3 of the cerebral cortex, including the STG, have been shown to be significantly decreased by 23-66% in subjects with schizophrenia. Second, consistent with these findings, the average somal area of these pyramidal cells is significantly smaller. Third, we have recently found that, in the prefrontal cortex, the density of glutamatergic axonal boutons, of which dendritic spines are their major targets, was significantly decreased by as much as 79% in layer 3 (but not layer 5) in subjects with schizophrenia. Finally, an increasing number of clinical studies have consistently demonstrated that gamma oscillatory synchrony is profoundly impaired in patients with schizophrenia. Furthermore, gamma impairment has been linked to the symptoms and cognitive deficits of the illness and the severity of these symptoms and deficits have in turn been associated with the magnitude of cortical gray matter reduction. Taken together, understanding the molecular underpinnings of pyramidal cell dysfunction will shed important light onto the pathophysiology of cortical dysfunction of schizophrenia. In order to gain insight into the molecular determinants of pyramidal cell dysfunction in schizophrenia, we combined LCM with Affymetrix microarray and high-throughput TaqManM-BM-.-based MegaPlex qRT-PCR approaches, respectively, to elucidate the alterations in messenger ribonucleic acid (mRNA) and microRNA (miRNA) expression profiles of these neurons in layer 3 of the STG. We found that transforming growth factor beta (TGFM-NM-2) and BMP (bone morphogenetic proteins) signaling pathways and many genes that regulate extracellular matrix (ECM), apoptosis and cytoskeleton were dysregulated in schizophrenia. In addition, we identified 10 miRNAs that were differentially expressed in this illness; interestingly, the predicted targets of these miRNAs included the dysregulated pathways and gene networks identified by microarray analysis. Together these findings provide a neurobiological framework within which we can begin to formulate and test specific hypotheses about the molecular mechanisms that underlie pyramidal cell dysfunction in schizophrenia. Gene epxression microarray from RNA isolated from pyramidal cells in layer III of the STG from 9 normal controls and 9 subjects with schizophrenia. There was no significant difference between diagnosis groups for age, sex, and post mortem interval (PMI).
Project description:we used DNA microarray analysis to identify genes that are induced by neuronal activity in excitatory neurons at the time when inhibitory synapses are forming and maturing on them. Keywords: Primary neuron culture, depolarization, activity-dependent