Project description:Pseudomonas aeruginosa PAO1 is the most commonly used strain for research on this ubiquitous and metabolically versatile opportunistic pathogen. Strain PAO1, a derivative of the original Australian PAO isolate, has been distributed worldwide to laboratories and strain collections. Over decades discordant phenotypes of PAO1 sublines have emerged. Taking the existing PAO1-UW genome sequence (named after the University of Washington, which led the sequencing project) as a blueprint, the genome sequences of reference strains MPAO1 and PAO1-DSM (stored at the German Collection for Microorganisms and Cell Cultures [DSMZ]) were resolved by physical mapping and deep short read sequencing-by-synthesis. MPAO1 has been the source of near-saturation libraries of transposon insertion mutants, and PAO1-DSM is identical in its SpeI-DpnI restriction map with the original isolate. The major genomic differences of MPAO1 and PAO1-DSM in comparison to PAO1-UW are the lack of a large inversion, a duplication of a mobile 12-kb prophage region carrying a distinct integrase and protein phosphatases or kinases, deletions of 3 to 1,006 bp in size, and at least 39 single-nucleotide substitutions, 17 of which affect protein sequences. The PAO1 sublines differed in their ability to cope with nutrient limitation and their virulence in an acute murine airway infection model. Subline PAO1-DSM outnumbered the two other sublines in late stationary growth phase. In conclusion, P. aeruginosa PAO1 shows an ongoing microevolution of genotype and phenotype that jeopardizes the reproducibility of research. High-throughput genome resequencing will resolve more cases and could become a proper quality control for strain collections.
Project description:The TyrR-like enhancer-binding protein GcsR (or PA2449) was shown to regulate the expression of genes required for glycine metabolism. In order to define the regulon of GcsR we compared the transcriptome of a gcsR deletion mutant of P. aeruginosa PAO1 with that of the wild-type using RNA-Seq.
Project description:Pseudomonas aeruginosa is ubiquitously present in the environment and acts as an opportunistic pathogen on humans, animals and plants. We report here the effects of the prebiotic polysaccharide inulin and its hydrolysed form FOS on this bacterium. FOS was found to inhibit bacterial growth of strain PAO1, while inulin did not affect growth rate or yield in a significant manner. Inulin stimulated biofilm formation, whereas a dramatic reduction of the biofilm formation was observed in the presence of FOS. Similar opposing effects were observed for bacterial motility, where FOS inhibited the swarming and twitching behaviour whereas inulin caused its stimulation. In co-cultures with eukaryotic cells (macrophages) FOS and, to a lesser extent, inulin reduced the secretion of the inflammatory cytokines IL-6, IL-10 and TNF-?. Western blot experiments indicated that the effects mediated by FOS in macrophages are associated with a decreased activation of the NF-?B pathway. Since FOS and inulin stimulate pathway activation in the absence of bacteria, the FOS mediated effect is likely to be of indirect nature, such as via a reduction of bacterial virulence. Further, this modulatory effect is observed also with the highly virulent ptxS mutated strain. Co-culture experiments of P. aeruginosa with IEC18 eukaryotic cells showed that FOS reduces the concentration of the major virulence factor, exotoxin A, suggesting that this is a possible mechanism for the reduction of pathogenicity. The potential of these compounds as components of antibacterial and anti-inflammatory cocktails is discussed.
Project description:The P. aeruginosa reference strain PAO1 has been used to delineate much of the physiology, metabolism, and fundamental biology of the species. The wild-type parent of PAO1 was lost, and PAO1 carries a regulatory mutation introduced for positive genetic selection that affects antibiotic resistance, virulence, quorum sensing, and other traits. The mutation is a loss-of-function change in an oxidoreductase gene (mexS), which constitutively activates a stress response controlled by a positive regulator (MexT). Fitness defects associated with the constitutive response have led to the inadvertent selection of mexT-minus suppressor mutations, creating genetic heterogeneity in PAO1 sublines studied in different laboratories. To help circumvent complications due to the mexS-minus phenotypes, we created a wild-type version of PAO1 (called LPAO) by "reverting" its mexS to the functional allele likely to have been in its parent. Phenotypic analysis revealed that the mexS-minus allele in PAO1 makes growth sensitive to salt (NaCl) and is lethal when combined with mutations inactivating the major sodium antiporter (ShaABCDEF). The salt sensitivity of PAO1 may underlie some complex mexS-minus phenotypes and help explain the selection of mexT-minus suppressor mutations. To facilitate genetic comparisons of PAO1, LPAO, and other P. aeruginosa strains, we developed a transformation procedure to transfer selectable alleles, such as transposon insertion alleles, between strains. Overall, the study helps explain phenotypic heterogeneity of PAO1-derived strains and provides resources to help recognize and eliminate difficulties due to it. IMPORTANCE The P. aeruginosa reference strain PAO1 carries a regulatory mutation that may affect processes characterized in it. To eliminate complications due to the mutation, we constructed a version of the missing wild-type parent strain and developed methods to transfer mutations between PAO1 and the new strain. The methods are likely to be applicable to other isolates of P. aeruginosa as well.
Project description:Quorum sensing (QS) is used to coordinate social behaviors, such as virulence and biofilm formation, across bacterial populations. However, the role of QS in regulating phage-bacterium interactions remains unclear. Preventing phage recognition and adsorption are the first steps of bacterial defense against phages; however, both phage recognition and adsorption are a prerequisite for the successful application of phage therapy. In the present study, we report that QS upregulated the expression of phage receptors, thus increasing phage adsorption and infection rates in Pseudomonas aeruginosa. In P. aeruginosa PAO1, we found that las QS, instead of rhl QS, upregulated the expression of galU for lipopolysaccharide synthesis. Lipopolysaccharides act as the receptor of the phage vB_Pae_QDWS. This las QS-mediated phage susceptibility is a dynamic process, depending on host cell density. Our data suggest that inhibiting QS may reduce the therapeutic efficacy of phages. IMPORTANCE Phage resistance is a major limitation of phage therapy, and understanding the mechanisms by which bacteria block phage infection is critical for the successful application of phage therapy. In the present study, we found that Pseudomonas aeruginosa PAO1 uses las QS to promote phage infection by upregulating the expression of galU, which is necessary for the synthesis of phage receptor lipopolysaccharides. In contrast to the results of previous reports, we showed that QS increases the efficacy of phage-mediated bacterial killing. Since QS upregulates the expression of virulence factors and promotes biofilm development, which are positively correlated with lipopolysaccharide production in P. aeruginosa, increased phage susceptibility is a novel QS-mediated trade-off. QS inhibition may increase the efficacy of antibiotic treatment, but it will reduce the effectiveness of phage therapy.
Project description:Analysis of Pseudomonas aeruginosa PAO1 treated with 200 µM sphingomyelin. Results provide insight into the response to sphingomyelin in P. aeruginosa.
Project description:PauA2 plays an essential role in spermine catabolism and that exogenous spermine exerts a bactericidal effect on the ΔpauA2 mutant of P. aeruginosa. Not only subjected to growth inhibition by spermine, the pauA2 mutant without a functional γ-glutamylpolyamine synthetase PauA2 became more sensitive to β-lactam antibiotics in human serum. To explore PauA2 as a potential target of drug development, suppressors of the pauA2 mutant were isolated from selection plates containing spermine. These suppressors share common changes in various phenotypes. Genome resequencing of a representative suppressor revealed a unique mutation at the phoU gene, and a constitutive expression of the Pho regulon as evidenced by measurements of transcriptome analysis.