Project description:Assessment of the seminal fluid proteins of Drosophila mojavensis and Drosophila arizonae. Experiment was performed using SILAC, whereas D. arizonae males were labeled with L-lysine-2HCL, 4,4,5,5-D4 (Lys 4) and D. mojavensis males labeled with L-Lysine-13C6,15N2 (Lys 8) and mated to their respective conspecific females (unlabeled). Following copulation females were immediately frozen in liquid nitrogen and stored at -80 C until reproductive tracts were removed and placed in 50 mM ammonium bicarbonate.
Project description:We utilized three ecologically diverse Drosophila species to explore the influence of ecological adaptation on transcriptomic responses to isocaloric diets differing in their relative proportions of protein to sugar. Drosophila melanogaster, a cosmopolitan species that breeds in decaying fruit, exemplifies individuals long exposed to a Western diet higher in sugar, while the natural diet of the cactophilic D. mojavensis, is much lower in carbohydrates. Drosophila arizonae, the sister species of D. mojavensis, is largely cactophilic, but also utilizes rotting fruits that are higher in sugars than cacti. We exposed third instar larvae for 24 hours to diets either (1) high in protein relative to sugar, (2) diets with equal amounts of protein and sugar, and (3) diets low in protein but high in sugar. As we predicted, based upon earlier interspecific studies of development and metabolism, the most extreme differences in gene expression under different dietary conditions were found in D. mojavensis followed by D. arizonae. No differential expression among diets was observed for D. melanogaster, a species that survives well under all three conditions, with little impact on its metabolism. We suggest that these three species together provide a model to examine individual and population differences in vulnerability to lifestyle-associated health problems such as metabolic syndrome and diabetes.