Project description:affy_ralstonia_peeters_medicago - We have identified two essential virulence determinants (GALA7, a type III secretion effector and HpaP, a chaperone-like protein) of Ralstonia solanacearum for the infection and colonisation of the host plant Medicago truncatula. The scope of this project is to identify the GALA7 and HpaP-specific transcriptome alteration. For this purpose wild type and mutant infected root material (13h and 72h postinfection) will be analysed on M. truncatula affymetrix chips. Medicago truncatula (A17 line) are grown in vitro on Farheus medium (with Nitrogen source) plantlets are inoculated with water R. solanacearum wt, gala7 and hpap mutants, and root tips are collected at 13h and 72h postinoculation. Experiment was performed 3 times independently. 4 bacteria conditions x 2 harvest times x 3 biological repeats = 24 samples Keywords: gene knock out,normal vs disease comparison,time course,treated vs untreated comparison
Project description:affy_ralstonia_peeters_medicago - We have identified two essential virulence determinants (GALA7, a type III secretion effector and HpaP, a chaperone-like protein) of Ralstonia solanacearum for the infection and colonisation of the host plant Medicago truncatula. The scope of this project is to identify the GALA7 and HpaP-specific transcriptome alteration. For this purpose wild type and mutant infected root material (13h and 72h postinfection) will be analysed on M. truncatula affymetrix chips. Medicago truncatula (A17 line) are grown in vitro on Farheus medium (with Nitrogen source) plantlets are inoculated with water R. solanacearum wt, gala7 and hpap mutants, and root tips are collected at 13h and 72h postinoculation. Experiment was performed 3 times independently. 4 bacteria conditions x 2 harvest times x 3 biological repeats = 24 samples Keywords: gene knock out,normal vs disease comparison,time course,treated vs untreated comparison 24 arrays - Medicago
Project description:affy_ralstonia_medicago - Ralstonia solanacearum is the causal agent of the devastating bacterial wilt disease. Its infection process was studied with an in vitro inoculation procedure on intact roots of Medicago truncatula. The pathosystem involved susceptible A17 and resistant F83005.5 M truncatula lines infected with the pathogenic strain GMI1000. The mutant A17 line, Sickle, which showed a resistant phenotype was also part of the experiment. To identify host signaling pathway triggered by R. solanacearum infection with a focus on the involvment of ethylene, we used the Medicago Affymetrix array to monitore the expression profiles and the molecular process associated with initial symptoms development (12hpi) and colonization (72hpi). In order to maximize chances to observe differential gene expression, RNA samples were extracted from the root infection zone (root tips) -Three Medicago truncatula lines, A17, F83005.5 and sickle were inoculated with GMI1000 Ralstonai solanacearum strain (107 cfu/ml). RNA were extracted from root extremities (1 cm above the root tip) at time 0, 12h and 72h post inoculation. Three biological repeats were conducted
Project description:For transcript analysis of aluminum tolerance responses in Medicago truncatula (A17) we compared transcripts from 2.5 µM Al-treated and control (-Al) root tips corresponding to 12 h after Al treatment. Keywords: One time point and one genotype
Project description:For transcript analysis of aluminum tolerance responses in Medicago truncatula we compared transcripts from 2.5 µM Al-treated and control (-Al) root tips corresponding to 12 and 48 h after Al treatment in Al-tolerant (T32) and Al-sensitive (S70) lines. Keywords: 2 time points and 2 lines
Project description:We have used deep sequencing of small RNAs from nodules and root apexes of the model legume Medicago truncatula, to identify 113 novel candidate miRNAs. These miRNAs (legume or Mt-specific) are encoded by 278 putative hairpin precursors in the M. truncatula genome. Several miRNAs are differentially expressed in nodules and root tips and large variety of targets could be predicted for these genes. Specific miRNA isoforms showed contrasting expression patterns in these tissues Keywords: Transcriptome analysis
Project description:affy_ralstonia_medicago - Ralstonia solanacearum is the causal agent of the devastating bacterial wilt disease. Its infection process was studied with an in vitro inoculation procedure on intact roots of Medicago truncatula. The pathosystem involved susceptible A17 and resistant F83005.5 M truncatula lines infected with the pathogenic strain GMI1000. The mutant A17 line, Sickle, which showed a resistant phenotype was also part of the experiment. To identify host signaling pathway triggered by R. solanacearum infection with a focus on the involvment of ethylene, we used the Medicago Affymetrix array to monitore the expression profiles and the molecular process associated with initial symptoms development (12hpi) and colonization (72hpi). In order to maximize chances to observe differential gene expression, RNA samples were extracted from the root infection zone (root tips) -Three Medicago truncatula lines, A17, F83005.5 and sickle were inoculated with GMI1000 Ralstonai solanacearum strain (107 cfu/ml). RNA were extracted from root extremities (1 cm above the root tip) at time 0, 12h and 72h post inoculation. Three biological repeats were conducted normal vs disease comparison, time course, 27 arrays - Medicago
Project description:We have used deep sequencing of small RNAs from nodules and root apexes of the model legume Medicago truncatula, to identify 113 novel candidate miRNAs. These miRNAs (legume or Mt-specific) are encoded by 278 putative hairpin precursors in the M. truncatula genome. Several miRNAs are differentially expressed in nodules and root tips and large variety of targets could be predicted for these genes. Specific miRNA isoforms showed contrasting expression patterns in these tissues Keywords: Transcriptome analysis 3 samples examined: nodules, root tips, and root tips + NaCl
Project description:Root gravitropic response involves signal perception, signal transduction, asymetric auxin transport and differential cell elongation in the root tip. However, the regulatory mechanisms remain largely unknown. We used microarray to compare transcript profiles in the root tip samples of wild type and ngr mutant.