Project description:In order to screen and identify biomineralization gene, microarray technique was used to reveal tissues specific expression genes in the brunet mantle edge (ME), mantle centre (MC), and both ME and MC (ME-MC) from assembled transcriptome contigs of Pinctada fucata martensii, ideal pearl oyster for the study of biomineralization. Tissues of ME, MC, hepatopancreas, foot, gill, adductor muscle, heart and intestine were sampled from two females and one male pearl oyster. Gonad was sampled from above three individuals and another two male and one female. Equal amount RNA of each individual hepatopancreas, foot, gill, adductor muscle, heart and intestine were mixed as a composite viscera sample (CV), and equal amount gonad RNA from one male and one female were combined together as a gonad sample (GS). Hybridizations were performed with twelve samples of ME, MC, CV and GS.
Project description:In order to screen and identify biomineralization gene, microarray technique was used to reveal tissues specific expression genes in the brunet mantle edge (ME), mantle centre (MC), and both ME and MC (ME-MC) from assembled transcriptome contigs of Pinctada fucata martensii, ideal pearl oyster for the study of biomineralization. Tissues of ME, MC, hepatopancreas, foot, gill, adductor muscle, heart and intestine were sampled from two females and one male pearl oyster. Gonad was sampled from above three individuals and another two male and one female. Equal amount RNA of each individual hepatopancreas, foot, gill, adductor muscle, heart and intestine were mixed as a composite viscera sample (CV), and equal amount gonad RNA from one male and one female were combined together as a gonad sample (GS). Hybridizations were performed with twelve samples of ME, MC, CV and GS. Gene expression in ME, MC, gonad and other tissues were measured. Gonads were sampled from 6 individuals, and other tissues were sampled from above three individuals.
Project description:To elucidate the modulatory participation of miRNAs in mollusk biomineralization, we have employed high-throughput sequencing to identify miRNAs of pearl oyster, Pinctada fucata. Our study focused on the miRNA expression profile of the mantle, an organ responsible for shell formation of the oyster. The pearl oysters were cultured in the tank with the maintaining conditions of temperature 19 ℃, PH 8.1 and salinity 33‰ in recirculating seawater.