Project description:Hfq proteins are RNA chaperones that play a critical role in post-transcription regulation of gene expression. Bacteria of the Burkholderia cepacia complex harbor two distinct and functional Hfq proteins, the Hfq and Hfq2. We have previously performed the functional analysis of Hfq and Hfq2 in the pathogen Burkholderia cenocepacia J2315. In order to examine the impacts of each RNA chaperone on the global transcriptome of B. cenocepacia J2315, we performed comparative transcriptome profile of mutants on the hfq and hfq2 genes, using as reference the wild-type strain.
Project description:[1] Transcription profiling of one Burkholderia cenocepacia clinical isolate, J2315, versus a soil isolate, HI2424, in conditions mimicking CF sputum [2] Transcription profiling of Burkholderia cenocepacia isolates J2315 and HI2424 in media mimicking CF sputum or the soil environment
Project description:To determine whether CRISPR interference can be used to recapitulate a glycosylation null mutant strain in Burkholderia cenocepacia via data independent acquisition mass spectrometry
Project description:Burkholderia cenocepacia is a versatile opportunistic pathogen that survives in a wide variety of environments, which can be limited in nutrients such as nitrogen. We previously showed that B. cenocepacia sigma factor s54 played a major role in control of nitrogen assimilation and virulence. In this work, we investigated the role of the s54 enhancer binding protein NtrC in controlling the response to nitrogen limitation and virulence. RNA-Seq analyses and phenotypical analysis on a ntrC mutant strain showed that, in addition to orchestrating uptake of nitrogen sources, NtrC is also regulating exopolysaccharide (EPS) production and motility. A search for NtrC consensus sequences identified a potential binding sequence in the promoter region of gene clusters involved in EPS formation and flagellar rotation suggesting that NtrC directly controls the expression of these phenotypic traits in B. cenocepacia H111.
Project description:Burkholderia cenocepacia sequence type 32 (ST32) represents one of the most globally distributed strains from Bukrholderia cepacia complex (Bcc), which infected 30% of Czech cystic fibrosis (CF) patients. The aim of this study was to compare gene expression in two pairs of ST32 clinical isolates that were subjected to cultivation in two different conditions, characteristic for chronic B. cenocepacia infection in CF patients. ST32 strain is known to be a problematic epidemic strain, which caused a serious outbreak at the Prague CF centre.
Project description:Hfq proteins are RNA chaperones that play a critical role in post-transcription regulation of gene expression. Bacteria of the Burkholderia cepacia complex harbor two distinct and functional Hfq proteins, the Hfq and Hfq2. We have previously performed the functional analysis of Hfq and Hfq2 in the pathogen Burkholderia cenocepacia J2315. In order to examine the impacts of each RNA chaperone on the global transcriptome of B. cenocepacia J2315, we performed comparative transcriptome profile of mutants on the hfq and hfq2 genes, using as reference the wild-type strain. For expression profiling, over-night cultures of the Burkholderia cenocepacia J2315 wild-type strain and the isogenic mutants hfq::Tp and M-NM-^Thfq2 grown in LB medium were diluted to an initial OD640 nm of 0.25 into LB medium. Triplicate samples were cultured at 37M-BM-:C with 250 r.p.m. agitation for 16 h and RNA extracted from the three bacterial isolates.
Project description:Fang2011 - Genome-scale metabolic network of
Burkholderia cenocepacia (iKF1028)
This model is described in the article:
Exploring the metabolic
network of the epidemic pathogen Burkholderia cenocepacia J2315
via genome-scale reconstruction.
Fang K, Zhao H, Sun C, Lam CM, Chang
S, Zhang K, Panda G, Godinho M, Martins dos Santos VA, Wang
J.
BMC Syst Biol 2011; 5: 83
Abstract:
BACKGROUND: Burkholderia cenocepacia is a threatening
nosocomial epidemic pathogen in patients with cystic fibrosis
(CF) or a compromised immune system. Its high level of
antibiotic resistance is an increasing concern in treatments
against its infection. Strain B. cenocepacia J2315 is the most
infectious isolate from CF patients. There is a strong demand
to reconstruct a genome-scale metabolic network of B.
cenocepacia J2315 to systematically analyze its metabolic
capabilities and its virulence traits, and to search for
potential clinical therapy targets. RESULTS: We reconstructed
the genome-scale metabolic network of B. cenocepacia J2315. An
iterative reconstruction process led to the establishment of a
robust model, iKF1028, which accounts for 1,028 genes, 859
internal reactions, and 834 metabolites. The model iKF1028
captures important metabolic capabilities of B. cenocepacia
J2315 with a particular focus on the biosyntheses of key
metabolic virulence factors to assist in understanding the
mechanism of disease infection and identifying potential drug
targets. The model was tested through BIOLOG assays. Based on
the model, the genome annotation of B. cenocepacia J2315 was
refined and 24 genes were properly re-annotated. Gene and
enzyme essentiality were analyzed to provide further insights
into the genome function and architecture. A total of 45
essential enzymes were identified as potential therapeutic
targets. CONCLUSIONS: As the first genome-scale metabolic
network of B. cenocepacia J2315, iKF1028 allows a systematic
study of the metabolic properties of B. cenocepacia and its key
metabolic virulence factors affecting the CF community. The
model can be used as a discovery tool to design novel drugs
against diseases caused by this notorious pathogen.
This model is hosted on
BioModels Database
and identified by:
MODEL1507180051.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Members of the genus Burkholderia are versatile bacteria capable of colonizing highly diverse environmental niches. In this study, we investigated the global response of the opportunistic pathogen Burkholderia cenocepacia H111 to nitrogen limitation at the transcript and protein expression level. In addition to a classical response to nitrogen starvation, including the activation of glutamine synthetase, PII proteins and the two component regulatory system ntrBC, B. cenocepacia H111 also up-regulated polyhydroxybutyrate (PHB) accumulation and exopolysaccharide (EPS) production in response to nitrogen shortage. A search for consensus sequences in promoter regions of nitrogen responsive genes identified a s54 consensus sequence. The mapping of the s54 regulon as well as the characterization of a s54 mutant suggests an important role of s54 not only in control of nitrogen metabolism, but also in virulence of this organism.