Project description:Saccharophagus degradans strain 2-40 is a prominent member of newly discovered group of marine and estuarine bacteria that recycle complex polysaccharides. The S. degradans 2-40 genome codes for 15 extraordinary long polypeptides, ranging from 274 to 1,600 kDa. Five of these contain at least 52 cadherin (CA) and cadherin-like (CADG) domains, the types of which were reported to bind calcium ions and mediate protein/protein interactions in metazoan systems. In order to evaluate adhesive features of these domains, recombinant CA doublet domains (two neighboring domains) from CabC (Sde_3323) and recombinant CADG doublet domains from CabD (Sde_0798) were examined qualitatively and quantitatively for homophilic and heterophilic interactions. In addition, CA and CADG doublet domains were tested for adhesion to the surface of S. degradans 2-40. Results showed obvious homophilic and heterophilic, calcium ion-dependent interactions between CA and CADG doublet domains. Likewise, CA and CADG doublet domains adhered to the S. degradans 2-40 surface of cells that were grown on xylan from birch wood or pectin, respectively, as a sole carbon source. This research shows for the first time that bacterial cadherin homophilic and heterophilic interactions may be similar in their nature to cadherin domains from metazoan lineages. We hypothesize that S. degradans 2-40 cadherin and cadherin-like multiple domains contribute to protein-protein interactions that may mediate cell-cell contact in the marine environment.
Project description:Many agarolytic bacteria degrade agar polysaccharide into the disaccharide unit neoagarobiose [O-3,6-anhydro-alpha-L-galactopyranosyl-(1-->3)-D-galactose] using various beta-agarases. Neoagarobiose hydrolase is an enzyme that acts on the alpha-1,3 linkage in neoagarobiose to yield D-galactose and 3,6-anhydro-L-galactose. This activity is essential in both the metabolism of agar by agarolytic bacteria and the production of fermentable sugars from agar biomass for bioenergy production. Neoagarobiose hydrolase from the marine bacterium Saccharophagus degradans 2-40 was overexpressed in Escherichia coli and crystallized in the monoclinic space group C2, with unit-cell parameters a = 129.83, b = 76.81, c = 90.11 A, beta = 101.86 degrees . The crystals diffracted to 1.98 A resolution and possibly contains two molecules in the asymmetric unit.
Project description:Saccharophagus degradans 2-40 (formerly Microbulbifer degradans 2-40) is a marine gamma-subgroup proteobacterium capable of degrading many complex polysaccharides, such as agar. While several agarolytic systems have been characterized biochemically, the genetics of agarolytic systems have been only partially determined. By use of genomic, proteomic, and genetic approaches, the components of the S. degradans 2-40 agarolytic system were identified. Five agarases were identified in the S. degradans 2-40 genome. Aga50A and Aga50D include GH50 domains. Aga86C and Aga86E contain GH86 domains, whereas Aga16B carries a GH16 domain. Novel family 6 carbohydrate binding modules (CBM6) were identified in Aga16B and Aga86E. Aga86C has an amino-terminal acylation site, suggesting that it is surface associated. Aga16B, Aga86C, and Aga86E were detected by mass spectrometry in agarolytic fractions obtained from culture filtrates of agar-grown cells. Deletion analysis revealed that aga50A and aga86E were essential for the metabolism of agarose. Aga16B was shown to endolytically degrade agarose to release neoagarotetraose, similarly to a beta-agarase I, whereas Aga86E was demonstrated to exolytically degrade agarose to form neoagarobiose. The agarolytic system of S. degradans 2-40 is thus predicted to be composed of a secreted endo-acting GH16-dependent depolymerase, a surface-associated GH50-dependent depolymerase, an exo-acting GH86-dependent agarase, and an alpha-neoagarobiose hydrolase to release galactose from agarose.
Project description:The complex polysaccharide-degrading marine bacterium Saccharophagus degradans strain 2-40 produces putative proteins that contain numerous cadherin and cadherin-like domains involved in intercellular contact interactions. The current study reveals that both domain types exhibit reversible calcium-dependent binding to different complex polysaccharides which serve as growth substrates for the bacterium.
Project description:The marine bacterium Saccharophagus degradans strain 2-40 (Sde 2-40) is emerging as a vanguard of a recently discovered group of marine and estuarine bacteria that recycles complex polysaccharides. We report its complete genome sequence, analysis of which identifies an unusually large number of enzymes that degrade >10 complex polysaccharides. Not only is this an extraordinary range of catabolic capability, many of the enzymes exhibit unusual architecture including novel combinations of catalytic and substrate-binding modules. We hypothesize that many of these features are adaptations that facilitate depolymerization of complex polysaccharides in the marine environment. This is the first sequenced genome of a marine bacterium that can degrade plant cell walls, an important component of the carbon cycle that is not well-characterized in the marine environment.
Project description:Bacteria and fungi are thought to degrade cellulose through the activity of either a complexed or a noncomplexed cellulolytic system composed of endoglucanases and cellobiohydrolases. The marine bacterium Saccharophagus degradans 2-40 produces a multicomponent cellulolytic system that is unusual in its abundance of GH5-containing endoglucanases. Secreted enzymes of this bacterium release high levels of cellobiose from cellulosic materials. Through cloning and purification, the predicted biochemical activities of the one annotated cellobiohydrolase Cel6A and the GH5-containing endoglucanases were evaluated. Cel6A was shown to be a classic endoglucanase, but Cel5H showed significantly higher activity on several types of cellulose, was the highest expressed, and processively released cellobiose from cellulosic substrates. Cel5G, Cel5H, and Cel5J were found to be members of a separate phylogenetic clade and were all shown to be processive. The processive endoglucanases are functionally equivalent to the endoglucanases and cellobiohydrolases required for other cellulolytic systems, thus providing a cellobiohydrolase-independent mechanism for this bacterium to convert cellulose to glucose.
Project description:BackgroundLaminarin is a potential biomass feedstock for the production of glucose, which is the most preferable fermentable sugar in many microorganisms by which it can be converted to biofuels and bio-based chemicals. Also, laminarin is a good resource as functional materials because it consists of β-1,3-glucosidic linkages in its backbone and β-1,6-glucosidic linkages in its branches so that its oligosaccharides driven from laminarin have a variety of biological activities. It is industrially important to be able to produce laminarioligosaccharides as well as glucose from laminarin by a single enzyme because the enzyme cost accounts for a large part of bio-based products. In this study, we investigated the industrial applicability of Bgl1B, a unique β-glucosidase from Saccharophagus degradans 2-40T, belonging to the glycoside hydrolase family 1 (GH1) by characterizing its activity of hydrolyzing laminarin under various conditions.ResultsBgl1B was cloned and overexpressed in Escherichia coli from S. degradans 2-40T, and its enzymatic activity was characterized. Similar to most of β-glucosidases in GH1, Bgl1B was able to hydrolyze a variety of disaccharides having different β-linkages, such as laminaribiose, cellobiose, gentiobiose, lactose, and agarobiose, by cleaving β-1,3-, β-1,4-, and β-1,6-glycosidic linkages. However, Bgl1B showed the highest specific activity toward laminaribiose with a β-1,3-glycosidic linkage. In addition, it was able to hydrolyze laminarin, one of the major polysaccharides in brown macroalgae, into glucose with a conversion yield of 75% of theoretical maximum. Bgl1B also showed transglycosylation activity by producing oligosaccharides from laminarin and laminaribiose under a high mass ratio of substrate to enzyme. Furthermore, Bgl1B was found to be psychrophilic, exhibiting relative activity of 59-85% in the low-temperature range of 2-20 °C.ConclusionsBgl1B can directly hydrolyze laminarin into glucose with a high conversion yield without leaving any oligosaccharides. Bgl1B can exhibit high enzymatic activity in a broad range of low temperatures (2-20 °C), which is advantageous for establishing energy-efficient bioprocesses. In addition, under high substrate to enzyme ratios, Bgl1B can produce high-value laminarioligosaccharides via its transglycosylation activity. These results show that Bgl1B can be an industrially important enzyme for the production of biofuels and bio-based chemicals from brown macroalgae.