Project description:Boxer dataset for genome-wide association study of modifiers of risk of canine degenerative myelopathy in dogs homozygous for SOD1 mutation
Project description:PWC dataset for genome-wide association study of modifiers of risk of canine degenerative myelopathy in dogs homozygous for SOD1 mutation
Project description:Degenerative myelopathy (DM) is a canine disease very similar to amyotrophic lateral sclerosis (ALS) in humans. We previously showed that DM is a promising model for ALS, as genome-wide association identified a mutation in SOD1, a known ALS gene. In this study, we identify a modifier gene, SP110, which strongly affects overall disease risk and age-of-onset in Pembroke Welsh corgis at risk of DM. Dissecting the complex genetics of this disease in a model organism may lead to new insights about risk and progression in both canine and human patients. 15 DM-affected and 31 unaffected PWC homozygous for SOD1 mutation genotyped using the Illumina CanineHD array (~170,000 SNPs genomewide)
Project description:Degenerative myelopathy (DM) is a canine disease very similar to amyotrophic lateral sclerosis (ALS) in humans. We previously showed that DM is a promising model for ALS, as genome-wide association identified a mutation in SOD1, a known ALS gene. In this study, we identify a modifier gene, SP110, which strongly affects overall disease risk and age-of-onset in Pembroke Welsh corgis at risk of DM. Dissecting the complex genetics of this disease in a model organism may lead to new insights about risk and progression in both canine and human patients. 15 DM-affected and 10 unaffected Boxers homozygous for SOD1 mutation genotyped using the Illumina CanineHD array (~170,000 SNPs genomewide)
Project description:A juvenile form of paroxysmal dyskinesia segregated in the Markiesje dog breed. Affected pups exhibited clinical signs of a severe tetraparesis, dystonia, cramping and falling over when trying to walk. In most cases the presentation deteriorated within weeks and elective euthanasia was performed. Pedigree analysis indicated autosomal recessive inheritance. Genome-wide association and homozygosity mapping of 5 affected dogs from 3 litters identified the associated locus on chromosome 31 in the region of SOD1. The DNA sequence analysis of SOD1 showed that the patients were homozygous for a frameshift mutation in the fourth codon. None of the other analyzed dogs of the breed was homozygous for the mutation, indicating full penetrance of the genetic defect. Mutations in SOD1 are known to cause recessive degenerative myelopathy in middle-aged dogs with low penetrance and dominant amyotrophic lateral sclerosis in humans with variable age of onset. Our findings are similar to recent observations in human patients that a loss of function mutation in SOD1 leads to a juvenile neurologic disease distinct from amyotrophic lateral sclerosis.
Project description:Comparative oncology is a developing research discipline that is being used to assist our understanding of human neoplastic diseases. Companion canines are a preferred animal oncology model due to spontaneous tumor development and similarity to human disease at the pathophysiological level. We use a paired RNA sequencing (RNA-Seq)/microarray analysis of a set of four normal canine lymph nodes and ten canine lymphoma fine needle aspirates to identify technical biases and variation between the technologies and convergence on biological disease pathways. Surrogate Variable Analysis (SVA) provides a formal multivariate analysis of the combined RNA-Seq/microarray data set. Applying SVA to the data allows us to decompose variation into contributions associated with transcript abundance, differences between the technology, and latent variation within each technology. A substantial and highly statistically significant component of the variation reflects transcript abundance, and RNA-Seq proved more sensitive for detection of transcripts expressed at low levels. Latent random variation among RNA-Seq samples is also distinct in character from that impacting microarray samples. In particular, we observed variation between RNA-Seq samples that reflects transcript GC content. Platform-independent variable decomposition without a priori knowledge of the sources of variation using SVA represents a generalizable method for accomplishing cross-platform data analysis. We identified genes differentially expressed between normal lymph nodes of disease free dogs and a subset of the diseased dogs diagnosed with B-cell lymphoma using each technology. There is statistically significant overlap between the RNA-Seq and microarray sets of differentially expressed genes. Analysis of overlapping genes in the context of biological systems suggests elevated expression and activity of PI3K signaling in B-cell lymphoma biopsies compared with normal biopsies, consistent with literature describing successful use of drugs targeting this pathway in lymphomas.
Project description:Comparative oncology is a developing research discipline that is being used to assist our understanding of human neoplastic diseases. Companion canines are a preferred animal oncology model due to spontaneous tumor development and similarity to human disease at the pathophysiological level. We use a paired RNA sequencing (RNA-Seq)/microarray analysis of a set of four normal canine lymph nodes and ten canine lymphoma fine needle aspirates to identify technical biases and variation between the technologies and convergence on biological disease pathways. Surrogate Variable Analysis (SVA) provides a formal multivariate analysis of the combined RNA-Seq/microarray data set. Applying SVA to the data allows us to decompose variation into contributions associated with transcript abundance, differences between the technology, and latent variation within each technology. A substantial and highly statistically significant component of the variation reflects transcript abundance, and RNA-Seq proved more sensitive for detection of transcripts expressed at low levels. Latent random variation among RNA-Seq samples is also distinct in character from that impacting microarray samples. In particular, we observed variation between RNA-Seq samples that reflects transcript GC content. Platform-independent variable decomposition without a priori knowledge of the sources of variation using SVA represents a generalizable method for accomplishing cross-platform data analysis. We identified genes differentially expressed between normal lymph nodes of disease free dogs and a subset of the diseased dogs diagnosed with B-cell lymphoma using each technology. There is statistically significant overlap between the RNA-Seq and microarray sets of differentially expressed genes. Analysis of overlapping genes in the context of biological systems suggests elevated expression and activity of PI3K signaling in B-cell lymphoma biopsies compared with normal biopsies, consistent with literature describing successful use of drugs targeting this pathway in lymphomas. RNA was extracted from 10 lymphoma fine needle aspirates attained from companion canines. 4 normal lymph node samples were obtained from a Beagle breeding colony at Pfizer, including two samples that were taken from the same dog but different lymph nodes. This Series represents the Affymetrix gene expression only, not RNA-Seq referenced above. RNA-Seq data have been submitted to SRA as SRA059558.
Project description:Degenerative myelopathy (DM) is a canine disease very similar to amyotrophic lateral sclerosis (ALS) in humans. We previously showed that DM is a promising model for ALS, as genome-wide association identified a mutation in SOD1, a known ALS gene. In this study, we identify a modifier gene, SP110, which strongly affects overall disease risk and age-of-onset in Pembroke Welsh corgis at risk of DM. Dissecting the complex genetics of this disease in a model organism may lead to new insights about risk and progression in both canine and human patients.
Project description:Degenerative myelopathy (DM) is a canine disease very similar to amyotrophic lateral sclerosis (ALS) in humans. We previously showed that DM is a promising model for ALS, as genome-wide association identified a mutation in SOD1, a known ALS gene. In this study, we identify a modifier gene, SP110, which strongly affects overall disease risk and age-of-onset in Pembroke Welsh corgis at risk of DM. Dissecting the complex genetics of this disease in a model organism may lead to new insights about risk and progression in both canine and human patients.