Project description:Brucellosis is one of the most common zoonotic epidemics worldwide. Vaccination against Brucellosis is an important control strategy to prevent the disease in many high-prevalence regions. At present, Brucella vaccine strain S2 is the most widely used vaccine in China. In this study, to uncover the related mechanisms underlie virulence attenuation of S2, we characterized the transcriptional profile of S2 and 1330 infected macrophages by transcriptome analysis. The results revealed that expressions of 440 genes were significantly different between macrophages infected by 1330 and S2. Data analysis showed that in the gene ontology term, the different expressed genes involved in innate immune response, phagoctyosis, recognition, and inflammatory response were significantly enriched. Pathway enrichment analysis indicated that the genes involved in transcriptional misregulation in cancer, staphylococcus aureus infection pathways and NF-kappa B signaling pathway were significantly affected. To reveal the molecular mechanisms related to different expression profiles of infected macrophages, the transcription levels of the different genes between the two bacterial genomes were also detected. In total, the transcription of 29 different genes was significantly changed in either culture medium or infected microphages. The results of current study can be conducive to the promotion of better understanding of the related mechanisms underlie virulence attenuation of S2 and interactions between host cells and brucella strains.
Project description:Brucella suis is a causative agent of porcine brucellosis. We report the resequencing of the original sample upon which the published sequence of Brucella suis 1330 is based and describe the differences between the published assembly and our assembly at 12 loci.
Project description:BackgroundBrucellosis is a bacterial disease caused by Brucella infection. In the late fifties, Brucella suis vaccine strain S2 with reduced virulence was obtained by serial transfer of a virulent B. suis biovar 1 strain in China. It has been widely used for vaccination in China since 1971. Until now, the mechanisms underlie virulence attenuation of S2 are still unknown.ResultsIn this paper, the whole genome sequencing of S2 was carried out by Illumina Hiseq2000 sequencing method. We further performed the comparative genomic analysis to find out the differences between S2 and the virulent Brucella suis strain 1330. We found premature stops in outer membrane autotransporter omaA and eryD genes. Single mutations were found in phosphatidylcholine synthase, phosphorglucosamine mutase, pyruvate kinase and FliF, which have been reported to be related to the virulence of Brucella or other bacteria. Of the other different proteins between S2 and 1330, such as Omp2b, periplasmic sugar-binding protein, and oligopeptide ABC transporter, no definitive implications related to bacterial virulence were found, which await further investigation.ConclusionsThe data presented here provided the rational basis for designing Brucella vaccines that could be used in other strains.