Project description:Cervical cancer is a leading cause of cancer-related death in women worldwide. Nearly all cases of cervical cancer are attributed to infection with human papillomavirus (HPV), mainly high-risk type HPV16 and HPV18. Two viral genes, E6 and E7, play an important role in viral life cycle, since they delay keratinocyte differentiation and stimulate cell cycle progression, allowing the virus to exploit host DNA replication machinery to replicate its genome. Some of the oncogenic properties of E6 and E7 are mediated by host microRNAs (miRNAs) involved in the control of cell proliferation, senescence, and apoptosis. In order to identify genome-wide changes in miRNA expression profile, miRNA microarray analysis was performed on HFKs transduced with retroviral vectors carrying E6 and E7 genes of either HPV6 or HPV16 and with the LXSN empty vector. This dataset was used to identify and to further investigate the role of miR-146a-5p in cervical cancer.
Project description:Integration of high-risk human papillomavirus (HRHPV) into the host genome is a key event in cervical neoplastic progression. Integration is associated with deregulated expression of the viral oncogenes E6 and E7 and acquisition of a selective growth advantage.
Project description:Human papillomavirus type 8 (HPV8) is associated with the development of non-melanoma skin cancer. In the past we already delved into the mechanisms involved in keratinocyte invasion, showing that the viral E7 oncoprotein is a key player that drives invasion of basal keratinocytes controlled by the extracellular protein fibronectin. To unravel further downstream effects in E7 expressing keratinocytes we now characterized alterations of the secretome of E7 expressing N/TERT keratinocytes.
Project description:Human papillomavirus type 8 (HPV8) is associated with the development of non-melanoma skin cancer. In the past we already delved into the mechanisms involved in keratinocyte invasion, showing that the viral E7 oncoprotein is a key player that drives invasion of basal keratinocytes controlled by the extracellular protein fibronectin. To unravel further downstream effects in E7 expressing keratinocytes we now characterized alterations of the phospho-proteome in E7 expressing N/TERT keratinocytes.
Project description:The infection with high-risk human papillomavirus is aetiologically linked to cervical cancer, the role of miRNAs regulated by virus oncogene in cancer progression remain largely unknown. Here, we screened the differentially expressed miRNAs with miRNA array between virus oncogene e6/e7 silenced and not in HPV16-positive cervical cancer cell lines In the study, we screened the differentially expressed miRNAs with miRNA array (Exiqon, miRCURY LNA microRNA array, 7th gen [hsa, miRBase 18]) between virus oncogene e6/e7 silenced and not in HPV16-positive cervical cancer cell lines to found miRNAs regulated by virus oncogene e6/e7. Biological replicates: 3 control, 3 e6/e7 silenced, independently grown and harvested. four replicates per array.
Project description:The infection with high-risk human papillomavirus is aetiologically linked to cervical cancer, the role of miRNAs regulated by virus oncogene in cancer progression remain largely unknown. Here, we screened the differentially expressed miRNAs with miRNA array between virus oncogene e6/e7 silenced and not in HPV16-positive cervical cancer cell lines
Project description:Human papillomavirus (HPV) E6 and E7 oncoproteins are expressed at all stages of HPV-mediated carcinogenesis and are essential drivers of cancers caused by high-risk HPV. Some of the activities of HPV E6 and E7, such as their interactions with host cellular tumor suppressors, have been characterized extensively. There is less information about how high-risk HPV E6 and E7 alter cellular responses to cytokines that are present in HPV-infected tissues and are an important component of the tumor microenvironment. We used several models of HPV oncoprotein activity to assess how E6 and E7 alter the cellular response to the pro-inflammatory cytokine IL-1beta. Models of early-stage HPV infection (human keratinocytes expressing HPV16 E6 and E7) and models of established HPV-positive head and neck cancers (patient-derived xenografts, head and neck cancer cell lines) exhibited similar dysregulation of IL-1 pathway genes and suppressed responses to IL-1beta treatment. Such overlap in cell responses supports that changes induced by HPV E6 and E7 early in infection could persist and contribute to a dysregulated immune environment throughout carcinogenesis. HPV E6 and E7 also drove the upregulation of several suppressors of IL-1 cytokine signaling, including SIGIRR, both in primary keratinocytes and in cancer cells. SIGIRR knockout was insufficient to increase IL-1beta-dependent gene expression in the presence of HPV16 E6 and E7, suggesting that multiple suppressors of IL-1 signaling contribute to dampened IL-1 responses in HPV16-positive cells.
Project description:To investigate the extent of host methylome dysregulation by the human papillomavirus (HPV) oncoprotein E7, we performed methylome array analysis on normal immortalized keratinocytes from skin (NIKS), NIKS cells maintaining the HPV16 or 18 episomes (NIKS-16, NIKS-18, respectively), and NIKS cells maintaining the HPV-16 episome deficient in E7 expression (NIKS-16ΔE7).
Project description:Human papillomavirus (HPV) genome integration into the host genome, blocking E2 expression and leading to overexpression of E6 and E7 viral oncogenes, is considered a major step in cervical cancer development. In high-risk HPVs, E6 and E7 oncogenes are expressed as a bicistronic pre-mRNA, with alternative splicing producing the ultimate mRNAs required for E6 and E7 translation. Given the number of alternative donor and acceptor splicing sites, ten E6/E7 different alternative transcripts might be formed for HPV16 and three for HPV18, although only six isoforms have been previously reported for HPV16. In the present work, we employ high-throughput sequencing of invasive cervical cancer transcriptome (RNA-Seq) to characterize the expression of the HPV genome in 24 invasive cervical cancers associated with HPV16 and HPV18 single infections. Based on high-resolution transcriptional maps, we herein report three viral gene expression patterns which might be associated with the presence of the viral genome in episomal and/or integrated stages. Alternative mRNAs splicing isoforms coding for E6 and E7 oncoproteins were characterized and quantified, and two novel isoforms were identified. Three major isoforms (E6*I, E6*II, and E6+E7) were detected for HPV16 and two for HPV18 (E6*I and E6+E7). Minor transcript isoforms, including the novel ones, were very rare in some tumor samples or were not detected. Our data suggested that minor transcript isoforms of E6/E7 do not play a relevant role in cervical cancer.