Project description:Nucleus is a highly structured organelle and contains many functional compartments. While the structural basis for this complex spatial organization of compartments is unknown, a major component of this organization is likely to be the non-chromatin scaffolding called nuclear matrix (NuMat). Experimental evidence over the past decades indicates that most of the nuclear functions are at least transiently associated with the NuMat although the components of NuMat itself are poorly known. Here, we report NuMat proteome analysis from Drosophila melanogaster embryos and discuss its links with nuclear architecture and functions. In the NuMat proteome, we find structural proteins, chaperones related, DNA/RNA binding, chromatin remodeling and transcription factors. This complexity of NuMat proteome is an indicator of its structural and functional significance. Comparison of the 2D profile of NuMat proteome from different developmental stages of Drosophila embryos shows that less than half of the NuMat proteome is constant and rest of the proteins are stage specific dynamic components. This NuMat dynamics suggests a possible functional link between NuMat and the embryonic development. Finally, we also show that a subset of NuMat proteins remain associated with the mitotic chromosomes implicating their role in mitosis and possibly the epigenetic cellular memory. NuMat proteome analysis provides tools and opens up ways to understand nuclear organization and function.
Project description:ChIP-seq study analysing adult Drosophila melanogaster head, glial, neuronal and fat body, as well as embryonic RNA pol II and H2A.v binding by employing the GAL4-UAS system to generate GFP-fusion proteins and ChIP-seq
Project description:The notion that genes are the sole units of heredity and that a barrier exists between soma and germline has been a major hurdle in elucidating the heritability of traits that were observed to follow a non-Mendelian inheritance pattern. It was only after the conception of “epigenetics” by C. H. Waddington that the effect of parental environment on subsequent generations via non-DNA sequence-based mechanisms, such as DNA methylation, chromatin modifications, non-coding RNAs and proteins, could be established in various organisms, now referred to as multigenerational epigenetic inheritance. Despite the growing body of evidence, the male gamete-derived epigenetic factors that mediate the transmission of such phenotypes are seldom explored, particularly in the model organism Drosophila melanogaster. Using the heat stress-induced multigenerational epigenetic inheritance paradigm in a widely used position-effect variegation line of Drosophila, named white-mottled, we have dissected the effect of heat stress on the sperm proteome in the current study. We demonstrate that multiple successive generations of heat stress at the early embryonic stage results in a significant downregulation of proteins associated with translation, chromatin organization, microtubule-based processes, and generation of metabolites and energy in the Drosophila sperms. Based on our findings, we propose chromatin-based epigenetic mechanisms, a well-established mechanism for environmentally induced multigenerational effects, as a plausible way of transmitting heat stress memory via the male germ line in subsequent generations. Moreover, we demonstrate the effect of multiple generations of heat stress on the reproductive fitness of Drosophila, shedding light on the adaptive or maladaptive potential of heat stress-induced multigenerational phenotypes.