Project description:The rumen harbors a complex mixture of archaea, bacteria, protozoa and fungi that efficiently breakdown plant biomass and its complex dietary carbohydrates into soluble sugars that can be fermented and subsequently converted into metabolites and nutrients utilized by the host animal. While rumen bacteria populations have been well documented, only a fraction of the rumen eukarya are taxonomically and functionally characterized, despite the recognition that they contribute to the cellulolytic phenotype of the rumen fauna. To investigate how anaerobic fungi actively engage in digestion of recalcitrant fiber that is resistant to the initial stages of rumination, we resolved genome-centric metaproteome and metatranscriptome datasets generated from switchgrass samples incubated in nylon bags within the rumen of cannulated dairy cows for 48 hours.
Project description:By means of semi-continuous experiment, the washout effect of incoming and outgoing materials and long-term accumulation of endogenous ammonia in actual anaerobic digestion plant were simulated, and the ammonia inhibition mechanism in anaerobic digestion was explored.