Project description:RNA-seq was used in combination with various analytical chemistry approaches to identify the chemical and genetic basis of pigment production of the bacterium Glutamicibacter arilaitensis when growing on cheese. This bacterium commonly found in cheese rinds where it co-occurs with Penicillium species and other molds. Pinkish-red pigments are produced by the bacterium in response to growth with Penicillium. Both chemical analyses and RNA-seq point to coproporphyrin III as the major metabolite leading to pigment formation.
Project description:Caldicellulosiruptor saccharolyticus is an extremely thermophilic, Gram-positive anaerobe, which ferments cellulose-, hemicellulose- and pectin-containing biomass to acetate, CO2 and hydrogen. Its broad substrate range, high hydrogen-producing capacity, and ability to co-utilize glucose and xylose, make this bacterium an attractive candidate for microbial bioenergy production. Glycolytic pathways and an ABC-type sugar transporter were significantly up-regulated during growth on glucose and xylose, indicating that C. saccharolyticus co-ferments these sugars unimpeded by glucose-based catabolite repression. The capacity to simultaneously process and utilize a range of carbohydrates associated with biomass feedstocks represents a highly desirable feature of a lignocellulose-utilizing, biofuel-producing bacterium. Keywords: substrate response