Project description:In order to identify gene expression difference between marine and freshwater stickleback populations, we compared the transcriptomes of seven adult tissues (eye, gill, heart, hypothalumus, liver, pectoral muscle, telencephalon) between a marine population sampled from the mouth of the Little Campbell river in British Columbia (LITC) and a freshwater population (Fishtrap Creek, FTC) from northern Washington. For each population, the sampled individuals were the lab-reared progeny of a single pair of wild-caught parents.
Project description:In order to identify gene expression difference between marine and freshwater stickleback populations, we compared the transcriptomes of seven adult tissues (eye, gill, heart, hypothalumus, liver, pectoral muscle, telencephalon) between a marine population sampled from the mouth of the Little Campbell river in British Columbia (LITC) and a freshwater population (Fishtrap Creek, FTC) from northern Washington. For each population, the sampled individuals were the lab-reared progeny of a single pair of wild-caught parents. Four to five fish from each population were used as biological replicates for each of the seven tissues. For each population, the sampled individuals were the lab-reared progeny of a single pair of wild-caught parents. All fish were of similar age and were raised in the same aquarium (salinity: 3.5 ppt), with a plastic divider separating the marine and freshwater groups. One male and four females were sampled from each population. Microarray experiments were performed in a 2-color format on custom Agilent arrays: experimental RNA samples were labeled with Cy5, and the common reference RNA sample was labeled with Cy3. The reference RNA was total RNA isolated from a large number of 7-day-post-hatch embryos from the freshwater population of Bear Paw Lake, Alaska (BEPA). One technical replicate was used for each array, and one of the hypothalamus samples (Hyp_FTC#3) was excluded from further analysis due to poor quality indicators. FTC#1 liver and LITC#2 pectoral muscle samples did not yield RNA of sufficient quality for the microarray experiment, and were also excluded from hybridization.
Project description:Analysis of microbial gene expression in response to physical and chemical gradients forming in the Columbia River, estuary, plume and coastal ocean was done in the context of the environmental data base. Gene expression was analyzed for 2,234 individual genes that were selected from fully sequenced genomes of 246 prokaryotic species (bacteria and archaea) as related to the nitrogen metabolism and carbon fixation. Seasonal molecular portraits of differential gene expression in prokaryotic communities during river-to-ocean transition were created using freshwater baseline samples (268, 270, 347, 002, 006, 207, 212).
Project description:Analysis of microbial gene expression in response to physical and chemical gradients forming in the Columbia River, estuary, plume and coastal ocean was done in the context of the environmental data base. Gene expression was analyzed for 2,234 individual genes that were selected from fully sequenced genomes of 246 prokaryotic species (bacteria and archaea) as related to the nitrogen metabolism and carbon fixation. Seasonal molecular portraits of differential gene expression in prokaryotic communities during river-to-ocean transition were created using freshwater baseline samples (268, 270, 347, 002, 006, 207, 212). Total RNA was isolated from 64 filtered environmental water samples collected in the Columbia River coastal margin during 4 research cruises (14 from August, 2007; 17 from November, 2007; 18 from April, 2008; and 16 from June, 2008), and analyzed using microarray hybridization with the CombiMatrix 4X2K format. Microarray targets were prepared by reverse transcription of total RNA into fluorescently labeled cDNA. All samples were hybridized in duplicate, except samples 212 and 310 (hybridized in triplicate) and samples 336, 339, 50, 152, 157, and 199 (hybridized once). Sample location codes: number shows distance from the coast in km; CR, Columbia River transect in the plume and coastal ocean; NH, Newport Hydroline transect in the coastal ocean at Newport, Oregon; AST and HAM, Columbia River estuary locations near Astoria (river mile 7-9) and Hammond (river mile 5), respectively; TID, Columbia River estuary locations in the tidal basin (river mile 22-23); BA, river location at Beaver Army Dock (river mile 53) near Quincy, Oregon; UP, river location at mile 74.
Project description:Xiangjiang River (Hunan, China) has been contaminated with heavy metal for several decades by surrounding factories. However, little is known about the influence of a gradient of heavy metal contamination on the diversity, structure of microbial functional gene in sediment. To deeply understand the impact of heavy metal contamination on microbial community, a comprehensive functional gene array (GeoChip 5.0) has been used to study the functional genes structure, composition, diversity and metabolic potential of microbial community from three heavy metal polluted sites of Xiangjiang River.
Project description:Comparison of freshwater tolerant (accession CCAP 1310/196, origin Hopkins River Falls, Victoria, Australia) and strictly marine strain (accession CCAP 1310/4, origin San Juan de Marcona, Peru) of E. siliculosus under different salinites